Only this pageAll pages
Powered by GitBook
1 of 20

SDK and API Reference

Loading...

Python

Loading...

Python pacakges

Loading...

Loading...

Loading...

TypeScript

Loading...

TypeScript Packages

Loading...

Rest API

Loading...

Loading...

Loading...

Loading...

Loading...

Loading...

Loading...

Loading...

Overview

Phoenix provides SDK and API access to log, query, and evaluate LLM traces across Python, TypeScript, and REST interfaces. Our documentation offers flexible integration points to fit your workflow.

Overview

Features

Installation

Install via pip.

pip install -Uq arize-phoenix-client

Usage

from phoenix.client import Client

client = Client(base_url="your-server-url")  # base_url defaults to http://localhost:6006

Authentication (if applicable)

Phoenix API key can be an environment variable...

import os

os.environ["PHOENIX_API_KEY"] = "your-api-key"

...or passed directly to the client.

from phoenix.client import Client

client = Client(api_key="your-api-key")

Custom Headers

By default, the Phoenix client will use the bearer authentication scheme in the HTTP headers, but if you need different headers, e.g. for Phoenix Cloud, they can also be customized via an environment variable...

import os

os.environ["PHOENIX_CLIENT_HEADERS"] = "api-key=your-api-key,"  # use `api-key` for Phoenix Cloud

...or passed directly to the client.

from phoenix.client import Client

client = Client(headers={"api-key": "your-api-key"})  # use `api-key` for Phoenix Cloud

Prompt Management

With the Phoenix client, you can push and pull prompts to and from your Phoenix server.

from phoenix.client import Client
from phoenix.client.types import PromptVersion

# Change base_url to your Phoenix server URL
base_url = "http://localhost:6006"
client = Client(base_url=base_url)

# prompt identifier consists of alphanumeric characters, hyphens or underscores
prompt_identifier = "haiku-writer"

content = "Write a haiku about {{topic}}"
prompt = client.prompts.create(
    name=prompt_identifier,
    version=PromptVersion(
        [{"role": "user", "content": content}],
        model_name="gpt-4o-mini",
    ),
)

The client can retrieve a prompt by its name.

prompt = client.prompts.get(prompt_identifier=prompt_identifier)

The prompt can be used to generate completions.

from openai import OpenAI

variables = {"topic": "programming"}
resp = OpenAI().chat.completions.create(**prompt.format(variables=variables))
print(resp.choices[0].message.content)

Project Management

The Phoenix client provides synchronous and asynchronous interfaces for interacting with Phoenix Projects.

Key Features

  • Get a project by ID or name

  • List all projects

  • Create a new project with optional description

  • Update a project’s description (note: names cannot be changed)

  • Delete a project by ID or name

Usage Examples

from phoenix.client import Client
client = Client(base_url="your-server-url")

# List all projects
projects = client.projects.list()

# Get a project by ID or name
project = client.projects.get(project_id="UHJvamVjdDoy")
project = client.projects.get(project_name="My Project")

# Create a project
new_project = client.projects.create(
    name="New Project",
    description="This is a new project"
)

# Update a project
updated_project = client.projects.update(
    project_id="UHJvamVjdDoy",
    description="Updated description"
)

# Delete a project
client.projects.delete(project_name="My Project")

Prompts

REST API methods for interacting with Phoenix prompts

MCP Server

MCP server implementation for Arize Phoenix providing unified interface to Phoenix's capabilities.

Phoenix MCP Server is an implementation of the Model Context Protocol for the Arize Phoenix platform. It provides a unified interface to Phoenix's capabilites.

You can use Phoenix MCP Server for:

  • Prompts Management: Create, list, update, and iterate on prompts

  • Datasets: Explore datasets, and syntesize new examples

  • Experiments: Pull experiment results and visualize them with the help of an LLM

Installation

This MCP server can be used using npx and can be directly integrated with clients like Claude Desktop, Cursor, and more.

Development

Install

This package is managed via a pnpm workspace.

This only needs to be repeated if dependencies change or there is a change to the phoenix-client.

Building

To build the project:

Development Mode

To run in development mode:

Debugging

You can build and run the MCP inspector using the following:

Environment Variables

When developing, the server requires the following environment variables:

  • PHOENIX_API_KEY: Your Phoenix API key

  • PHOENIX_BASE_URL: The base URL for Phoenix

Make sure to set these in a .env file. See .env.example.

License

Apache 2.0

- Interact with Phoenix's OpenAPI REST interface

- Methods for loading, inspecting, and interacting with tracing and evaluation sessions

- Upload and download data to and from Phoenix

- Define and run evaluations across models, traces, or datasets

- Track, evaluate, and compare multiple runs under different conditions

- Integrate tracing and metrics using OpenTelemetry for automatic or manual instrumentation

- Transform spans and evaluations into datasets, define structures for features and predictions, and manage embedding columns

- Pull, push, and invoke prompts stored in Phoenix

- Create, read, update, and delete projects in Phoenix

To learn more about prompt engineering using Phenix, see the .

Don't see a use-case covered? @arizeai/phoenix-mcp is ! Issues and PRs welcome.

API
Session
Client
Evals
Experiments
Otel
Inferences / Schema
Phoenix documentation
npm i @arizeai/phoenix-mcp
{
  "mcpServers": {
    "phoenix": {
      "command": "npx",
      "args": [
        "-y",
        "@arizeai/phoenix-mcp@latest",
        "--baseUrl",
        "https://my-phoenix.com",
        "--apiKey",
        "your-api-key"
      ]
    }
  }
// From the /js/ directory
pnpm install
pnpm build
pnpm build
pnpm dev
pnpm inspect
open-source

arize-phoenix-client

Phoenix Client is a lightweight package for interacting with the Phoenix server.

The Python client is currently a work in progress. Please refer to the status below for the latest updates.

Features

  • API - Interact with Phoenix's OpenAPI REST interface

  • Prompt Management - Pull / push / and invoke prompts stored in Phoenix

Installation

Install via pip.

pip install -Uq arize-phoenix-client

Usage

from phoenix.client import Client

client = Client(base_url="your-server-url")  # base_url defaults to http://localhost:6006

Authentication (if applicable)

Phoenix API key can be an environment variable...

import os

os.environ["PHOENIX_API_KEY"] = "your-api-key"

...or passed directly to the client.

from phoenix.client import Client

client = Client(api_key="your-api-key")

Custom Headers

By default, the Phoenix client will use the bearer authentication scheme in the HTTP headers, but if you need different headers, e.g. for Phoenix Cloud, they can also be customized via an environment variable...

import os

os.environ["PHOENIX_CLIENT_HEADERS"] = "api-key=your-api-key,"  # use `api-key` for Phoenix Cloud

...or passed directly to the client.

from phoenix.client import Client

client = Client(headers={"api-key": "your-api-key"})  # use `api-key` for Phoenix Cloud

Prompt Management

With the Phoenix client, you can push and pull prompts to and from your Phoenix server.

from phoenix.client import Client
from phoenix.client.types import PromptVersion

# Change base_url to your Phoenix server URL
base_url = "http://localhost:6006"
client = Client(base_url=base_url)

# prompt identifier consists of alphanumeric characters, hyphens or underscores
prompt_identifier = "haiku-writer"

content = "Write a haiku about {{topic}}"
prompt = client.prompts.create(
    name=prompt_identifier,
    version=PromptVersion(
        [{"role": "user", "content": content}],
        model_name="gpt-4o-mini",
    ),
)

The client can retrieve a prompt by its name.

prompt = client.prompts.get(prompt_identifier=prompt_identifier)

The prompt can be used to generate completions.

from openai import OpenAI

variables = {"topic": "programming"}
resp = OpenAI().chat.completions.create(**prompt.format(variables=variables))
print(resp.choices[0].message.content)

Users

To learn more about prompt engineering using Phenix, see the .

Phoenix documentation

Experiments

REST API methods for interacting with Phoenix experiments

Overview

The Phoenix REST API allows you to access and interact with observability data programmatically. You can use it to retrieve project information, query traces and spans, access prompts, and automate analysis workflows directly from your environment.

Example Request

Get dataset by ID

Example Response

Spans

REST API methods for interacting with Phoenix spans

Datasets

REST API methods for interacting with Phoenix datasets

Cover

Python SDK

Documentation for Python SDK and subpackages

Cover

TypeScript SDK

Documentation for TypeScript SDK and subpackages

For an up-to-date OpenAPI text file that contains descriptions of all the REST API endpoints, see here:

{
  "data": [
    {
      "id": "version_123",
      "dataset_id": "your_dataset_id",
      "created_at": "2025-04-18T21:23:18.216Z",
      "metadata": {
        "source": "inference-logs"
      }
    }
  ],
  "next_cursor": null
}

REST API

Documentation for REST API methods

Cover
https://app.phoenix.arize.com/openapi.json

Traces

REST API methods for interacting with Phoenix traces

Projects

REST API methods for interacting with Phoenix projects

curl -L \
  --url '/v1/datasets'

arize-phoenix-evals

Tooling to evaluate LLM applications including RAG relevance, answer relevance, and more.

Phoenix's approach to LLM evals is notable for the following reasons:

  • Includes pre-tested templates and convenience functions for a set of common Eval “tasks”

  • Data science rigor applied to the testing of model and template combinations

  • Designed to run as fast as possible on batches of data

  • Includes benchmark datasets and tests for each eval function

Installation

Install the arize-phoenix sub-package via pip

pip install arize-phoenix-evals

Note you will also have to install the LLM vendor SDK you would like to use with LLM Evals. For example, to use OpenAI's GPT-4, you will need to install the OpenAI Python SDK:

pip install 'openai>=1.0.0'

Usage

Here is an example of running the RAG relevance eval on a dataset of Wikipedia questions and answers:

import os
from phoenix.evals import (
    RAG_RELEVANCY_PROMPT_TEMPLATE,
    RAG_RELEVANCY_PROMPT_RAILS_MAP,
    OpenAIModel,
    download_benchmark_dataset,
    llm_classify,
)
from sklearn.metrics import precision_recall_fscore_support, confusion_matrix, ConfusionMatrixDisplay

os.environ["OPENAI_API_KEY"] = "<your-openai-key>"

# Download the benchmark golden dataset
df = download_benchmark_dataset(
    task="binary-relevance-classification", dataset_name="wiki_qa-train"
)
# Sample and re-name the columns to match the template
df = df.sample(100)
df = df.rename(
    columns={
        "query_text": "input",
        "document_text": "reference",
    },
)
model = OpenAIModel(
    model="gpt-4",
    temperature=0.0,
)


rails =list(RAG_RELEVANCY_PROMPT_RAILS_MAP.values())
df[["eval_relevance"]] = llm_classify(df, model, RAG_RELEVANCY_PROMPT_TEMPLATE, rails)
#Golden dataset has True/False map to -> "irrelevant" / "relevant"
#we can then scikit compare to output of template - same format
y_true = df["relevant"].map({True: "relevant", False: "irrelevant"})
y_pred = df["eval_relevance"]

# Compute Per-Class Precision, Recall, F1 Score, Support
precision, recall, f1, support = precision_recall_fscore_support(y_true, y_pred)

arize-phoenix-otel

Provides a lightweight wrapper around OpenTelemetry primitives with Phoenix-aware defaults. Phoenix Otel also gives you acces to tracing decorators for common GenAI patterns.

These defaults are aware of environment variables you may have set to configure Phoenix:

  • PHOENIX_COLLECTOR_ENDPOINT

  • PHOENIX_PROJECT_NAME

  • PHOENIX_CLIENT_HEADERS

  • PHOENIX_API_KEY

  • PHOENIX_GRPC_PORT

Installation

Install via pip.

Examples

The phoenix.otel module provides a high-level register function to configure OpenTelemetry tracing by setting a global TracerProvider. The register function can also configure headers and whether or not to process spans one by one or by batch.

Quickstart

This is all you need to get started using OTel with Phoenix! register defaults to sending spans to an endpoint at http://localhost using gRPC.

Phoenix Authentication

If the PHOENIX_API_KEY environment variable is set, register will automatically add anauthorization header to each span payload.

Configuring the collector endpoint

There are two ways to configure the collector endpoint:

  • Using environment variables

  • Using the endpoint keyword argument

Using environment variables

If you're setting the PHOENIX_COLLECTOR_ENDPOINT environment variable, register will automatically try to send spans to your Phoenix server using gRPC.

Specifying the endpoint directly

When passing in the endpoint argument, you must specify the fully qualified endpoint. For example, in order to export spans via HTTP to localhost, use Pheonix's HTTP collector endpoint:http://localhost:6006/v1/traces. The default gRPC endpoint is different: http://localhost:4317. If the PHOENIX_GRPC_PORT environment variable is set, it will override the default gRPC port.

Additionally, the protocol argument can be used to enforce the OTLP transport protocol regardless of the endpoint specified. This might be useful in cases such as when the GRPC endpoint is bound to a different port than the default (4317). The valid protocols are: "http/protobuf", and "grpc".

Additional configuration

register can be configured with different keyword arguments:

  • project_name: The Phoenix project name (or PHOENIX_PROJECT_NAME env. var)

  • headers: Headers to send along with each span payload (or PHOENIX_CLIENT_HEADERS env. var)

  • batch: Whether or not to process spans in batch

A drop-in replacement for OTel primitives

For more granular tracing configuration, these wrappers can be used as drop-in replacements for OTel primitives:

Wrappers have Phoenix-aware defaults to greatly simplify the OTel configuration process. A specialendpoint keyword argument can be passed to either a TracerProvider, SimpleSpanProcessor orBatchSpanProcessor in order to automatically infer which SpanExporter to use to simplify setup.

Using environment variables

Specifying the endpoint directly

Further examples

Users can gradually add OTel components as desired:

Configuring resources

Using a BatchSpanProcessor

Specifying a custom GRPC endpoint

// Get dataset by ID
const response = await fetch('/v1/datasets/{id}', {
    method: 'GET',
});

const data = await response.json();

To learn more about LLM Evals, see the .

LLM Evals documentation
pip install -Uq arize-phoenix-otel
from phoenix.otel import register
tracer_provider = register()
# export PHOENIX_COLLECTOR_ENDPOINT=https://your-phoenix.com:6006

from phoenix.otel import register
tracer_provider = register()
from phoenix.otel import register
tracer_provider = register(endpoint="http://localhost:6006/v1/traces")
from phoenix.otel import register
tracer_provider = register(endpoint="http://localhost:9999", protocol="grpc")
from phoenix.otel import register
tracer_provider = register(
    project_name="otel-test", headers={"Authorization": "Bearer TOKEN"}, batch=True
)
from opentelemetry import trace as trace_api
from phoenix.otel import HTTPSpanExporter, TracerProvider, SimpleSpanProcessor

tracer_provider = TracerProvider()
span_exporter = HTTPSpanExporter(endpoint="http://localhost:6006/v1/traces")
span_processor = SimpleSpanProcessor(span_exporter=span_exporter)
tracer_provider.add_span_processor(span_processor)
trace_api.set_tracer_provider(tracer_provider)
# export PHOENIX_COLLECTOR_ENDPOINT=http://localhost:6006

from opentelemetry import trace as trace_api
from phoenix.otel import TracerProvider

tracer_provider = TracerProvider()
trace_api.set_tracer_provider(tracer_provider)
from opentelemetry import trace as trace_api
from phoenix.otel import TracerProvider

tracer_provider = TracerProvider(endpoint="http://localhost:4317")
trace_api.set_tracer_provider(tracer_provider)
# export PHOENIX_COLLECTOR_ENDPOINT=http://localhost:6006

from opentelemetry import trace as trace_api
from phoenix.otel import Resource, PROJECT_NAME, TracerProvider

tracer_provider = TracerProvider(resource=Resource({PROJECT_NAME: "my-project"}))
trace_api.set_tracer_provider(tracer_provider)
# export PHOENIX_COLLECTOR_ENDPOINT=http://localhost:6006

from opentelemetry import trace as trace_api
from phoenix.otel import TracerProvider, BatchSpanProcessor

tracer_provider = TracerProvider()
batch_processor = BatchSpanProcessor()
tracer_provider.add_span_processor(batch_processor)
from opentelemetry import trace as trace_api
from phoenix.otel import TracerProvider, BatchSpanProcessor, GRPCSpanExporter

tracer_provider = TracerProvider()
batch_processor = BatchSpanProcessor(
    span_exporter=GRPCSpanExporter(endpoint="http://custom-endpoint.com:6789")
)
tracer_provider.add_span_processor(batch_processor)
phoenix/js/packages/phoenix-mcp at main · Arize-ai/phoenixGitHub
phoenix/js/packages/phoenix-mcp at main · Arize-ai/phoenixGitHub
Prompt Management
Project Management

Overview

This package provides a TypeSript client for the Arize Phoenix API.

Installation

Configuration

The client will automatically read environment variables from your environment, if available.

The following environment variables are used:

  • PHOENIX_HOST - The base URL of the Phoenix API.

  • PHOENIX_API_KEY - The API key to use for authentication.

  • PHOENIX_CLIENT_HEADERS - Custom headers to add to all requests. A JSON stringified object.

Alternatively, you can pass configuration options to the client directly, and they will be prioritized over environment variables and default values.

Prompts

@arizeai/phoenix-client provides a prompts export that exposes utilities for working with prompts for LLMs.

Creating a Prompt and push it to Phoenix

The createPrompt function can be used to create a prompt in Phoenix for version control and reuse.

Prompts that are pushed to Phoenix are versioned and can be tagged.

Pulling a Prompt from Phoenix

The getPrompt function can be used to pull a prompt from Phoenix based on some Prompt Identifier and returns it in the Phoenix SDK Prompt type.

Using a Phoenix Prompt with an LLM Provider SDK

The toSDK helper function can be used to convert a Phoenix Prompt to the format expected by an LLM provider SDK. You can then use the LLM provider SDK as normal, with your prompt.

If your Prompt is saved in Phoenix as openai, you can use the toSDK function to convert the prompt to the format expected by OpenAI, or even Anthropic and Vercel AI SDK. We will do a best effort conversion to your LLM provider SDK of choice.

The following LLM provider SDKs are supported:

REST Endpoints

Endpoints are accessible via strongly-typed string literals and TypeScript auto-completion inside of the client object.

Examples

To run examples, install dependencies using pnpm and run:

Compatibility

Because of this, this package only works with the arize-phonix server 8.0.0 and above.

Compatibility Table:

🗺 Python Client / SDK migration · Issue #6542 · Arize-ai/phoenixGitHub

Vercel AI SDK: ai

OpenAI: openai

Anthropic: anthropic

The client provides a REST API for all endpoints defined in the .

A comprehensive overview of the available endpoints and their parameters is available in the OpenAPI viewer within Phoenix, or in the .

This package utilizes to generate the types from the Phoenix OpenAPI spec.

Phoenix Client Version
Phoenix Server Version
# or yarn, pnpm, bun, etc...
npm install @arizeai/phoenix-client
PHOENIX_HOST='http://localhost:12345' PHOENIX_API_KEY='xxxxxx' pnpx tsx examples/list_datasets.ts
# emits the following request:
# GET http://localhost:12345/v1/datasets
# headers: {
#   "Authorization": "Bearer xxxxxx",
# }
const phoenix = createClient({
  options: {
    baseUrl: "http://localhost:6006",
    headers: {
      Authorization: "Bearer xxxxxx",
    },
  },
});
import { createPrompt, promptVersion } from "@arizeai/phoenix-client/prompts";

const version = createPrompt({
  name: "my-prompt",
  description: "test-description",
  version: promptVersion({
    description: "version description here",
    modelProvider: "OPENAI",
    modelName: "gpt-3.5-turbo",
    template: [
      {
        role: "user",
        content: "{{ question }}",
      },
    ],
    invocationParameters: {
      temperature: 0.8,
    },
  }),
});
import { getPrompt } from "@arizeai/phoenix-client/prompts";

const prompt = await getPrompt({ name: "my-prompt" });
// ^ you now have a strongly-typed prompt object, in the Phoenix SDK Prompt type

const promptByTag = await getPrompt({ tag: "production", name: "my-prompt" });
// ^ you can optionally specify a tag to filter by

const promptByVersionId = await getPrompt({
  versionId: "1234567890",
});
// ^ you can optionally specify a prompt version Id to filter by
import { generateText } from "ai";
import { openai } from "@ai-sdk/openai";
import { getPrompt, toSDK } from "@arizeai/phoenix-client/prompts";

const prompt = await getPrompt({ name: "my-prompt" });
const promptAsAI = toSDK({
  sdk: "ai",
  // ^ the SDK you want to convert the prompt to, supported SDKs are listed above
  variables: {
    "my-variable": "my-value",
  },
  // ^ you can format the prompt with variables, if the prompt has any variables in its template
  //   the format (Mustache, F-string, etc.) is specified in the Prompt itself
  prompt,
});
// ^ promptAsAI is now in the format expected by the Vercel AI SDK generateText function

const response = await generateText({
  model: openai(prompt.model_name),
  // ^ the model adapter provided by the Vercel AI SDK can be swapped out for any other model
  //   adapter supported by the Vercel AI SDK. Take care to use the correct model name for the
  //   LLM provider you are using.
  ...promptAsAI,
});
import { createClient } from "@arizeai/phoenix-client";

const phoenix = createClient();

// Get all datasets
const datasets = await phoenix.GET("/v1/datasets");

// Get specific prompt
const prompt = await phoenix.GET("/v1/prompts/{prompt_identifier}/latest", {
  params: {
    path: {
      prompt_identifier: "my-prompt",
    },
  },
});
pnpm install
pnpx tsx examples/list_datasets.ts
# change the file name to run other examples

^1.0.0

^8.0.0

ai
openai
@anthropic-ai/sdk
Phoenix OpenAPI spec
Phoenix OpenAPI spec
openapi-ts
arize-phoenix-evalsPyPI
# Get dataset by ID
import requests

response = requests.get(
    "/v1/datasets/{id}",
)

data = response.json()
Logo
phoenix/packages/phoenix-otel/README.md at main · Arize-ai/phoenixGitHub
Logo
Logo
Client Challenge
Logo
npm: @arizeai/phoenix-clientnpm
Logo
GET /v1/datasets/{id} HTTP/1.1
Host: 
Accept: */*
Logo
Logo

List all prompts

get

Retrieve a paginated list of all prompts in the system. A prompt can have multiple versions.

Query parameters
cursorany ofOptional

Cursor for pagination (base64-encoded prompt ID)

stringOptional
or
nullOptional
limitintegerOptional

The max number of prompts to return at a time.

Default: 100
Responses
200
A list of prompts with pagination information
application/json
403
Forbidden
text/plain
422
Unprocessable Entity
text/plain
get
GET /v1/prompts HTTP/1.1
Host: 
Accept: */*
{
  "data": [
    {
      "name": "text",
      "description": "text",
      "source_prompt_id": "text",
      "id": "text"
    }
  ],
  "next_cursor": "text"
}

Create a new prompt

post

Create a new prompt and its initial version. A prompt can have multiple versions.

Body
Responses
200
The newly created prompt version
application/json
403
Forbidden
text/plain
422
Unprocessable Entity
text/plain
post
POST /v1/prompts HTTP/1.1
Host: 
Content-Type: application/json
Accept: */*
Content-Length: 847

{
  "prompt": {
    "name": "text",
    "description": "text",
    "source_prompt_id": "text"
  },
  "version": {
    "description": "text",
    "model_provider": "OPENAI",
    "model_name": "text",
    "template": {
      "type": "text",
      "messages": [
        {
          "role": "user",
          "content": "text"
        }
      ]
    },
    "template_type": "STR",
    "template_format": "MUSTACHE",
    "invocation_parameters": {
      "type": "text",
      "openai": {
        "temperature": 1,
        "max_tokens": 1,
        "max_completion_tokens": 1,
        "frequency_penalty": 1,
        "presence_penalty": 1,
        "top_p": 1,
        "seed": 1,
        "reasoning_effort": "low"
      }
    },
    "tools": {
      "type": "text",
      "tools": [
        {
          "type": "text",
          "function": {
            "name": "text",
            "description": "text",
            "parameters": {
              "ANY_ADDITIONAL_PROPERTY": "anything"
            },
            "strict": true
          }
        }
      ],
      "tool_choice": {
        "type": "text"
      },
      "disable_parallel_tool_calls": true
    },
    "response_format": {
      "type": "text",
      "json_schema": {
        "name": "text",
        "description": "text",
        "schema": {
          "ANY_ADDITIONAL_PROPERTY": "anything"
        },
        "strict": true
      }
    }
  }
}
{
  "data": {
    "description": "text",
    "model_provider": "OPENAI",
    "model_name": "text",
    "template": {
      "type": "text",
      "messages": [
        {
          "role": "user",
          "content": "text"
        }
      ]
    },
    "template_type": "STR",
    "template_format": "MUSTACHE",
    "invocation_parameters": {
      "type": "text",
      "openai": {
        "temperature": 1,
        "max_tokens": 1,
        "max_completion_tokens": 1,
        "frequency_penalty": 1,
        "presence_penalty": 1,
        "top_p": 1,
        "seed": 1,
        "reasoning_effort": "low"
      }
    },
    "tools": {
      "type": "text",
      "tools": [
        {
          "type": "text",
          "function": {
            "name": "text",
            "description": "text",
            "parameters": {
              "ANY_ADDITIONAL_PROPERTY": "anything"
            },
            "strict": true
          }
        }
      ],
      "tool_choice": {
        "type": "text"
      },
      "disable_parallel_tool_calls": true
    },
    "response_format": {
      "type": "text",
      "json_schema": {
        "name": "text",
        "description": "text",
        "schema": {
          "ANY_ADDITIONAL_PROPERTY": "anything"
        },
        "strict": true
      }
    },
    "id": "text"
  }
}

List prompt versions

get

Retrieve all versions of a specific prompt with pagination support. Each prompt can have multiple versions with different configurations.

Path parameters
prompt_identifierstringRequired

The identifier of the prompt, i.e. name or ID.

Query parameters
cursorany ofOptional

Cursor for pagination (base64-encoded promptVersion ID)

stringOptional
or
nullOptional
limitintegerOptional

The max number of prompt versions to return at a time.

Default: 100
Responses
200
A list of prompt versions with pagination information
application/json
403
Forbidden
text/plain
404
Not Found
text/plain
422
Unprocessable Entity
text/plain
get
GET /v1/prompts/{prompt_identifier}/versions HTTP/1.1
Host: 
Accept: */*
{
  "data": [
    {
      "description": "text",
      "model_provider": "OPENAI",
      "model_name": "text",
      "template": {
        "type": "text",
        "messages": [
          {
            "role": "user",
            "content": "text"
          }
        ]
      },
      "template_type": "STR",
      "template_format": "MUSTACHE",
      "invocation_parameters": {
        "type": "text",
        "openai": {
          "temperature": 1,
          "max_tokens": 1,
          "max_completion_tokens": 1,
          "frequency_penalty": 1,
          "presence_penalty": 1,
          "top_p": 1,
          "seed": 1,
          "reasoning_effort": "low"
        }
      },
      "tools": {
        "type": "text",
        "tools": [
          {
            "type": "text",
            "function": {
              "name": "text",
              "description": "text",
              "parameters": {
                "ANY_ADDITIONAL_PROPERTY": "anything"
              },
              "strict": true
            }
          }
        ],
        "tool_choice": {
          "type": "text"
        },
        "disable_parallel_tool_calls": true
      },
      "response_format": {
        "type": "text",
        "json_schema": {
          "name": "text",
          "description": "text",
          "schema": {
            "ANY_ADDITIONAL_PROPERTY": "anything"
          },
          "strict": true
        }
      },
      "id": "text"
    }
  ],
  "next_cursor": "text"
}

Get prompt version by tag

get

Retrieve a specific prompt version using its tag name. Tags are used to identify specific versions of a prompt.

Path parameters
prompt_identifierstringRequired

The identifier of the prompt, i.e. name or ID.

tag_namestringRequired

The tag of the prompt version

Responses
200
The prompt version with the specified tag
application/json
403
Forbidden
text/plain
404
Not Found
text/plain
422
Unprocessable Entity
text/plain
get
GET /v1/prompts/{prompt_identifier}/tags/{tag_name} HTTP/1.1
Host: 
Accept: */*
{
  "data": {
    "description": "text",
    "model_provider": "OPENAI",
    "model_name": "text",
    "template": {
      "type": "text",
      "messages": [
        {
          "role": "user",
          "content": "text"
        }
      ]
    },
    "template_type": "STR",
    "template_format": "MUSTACHE",
    "invocation_parameters": {
      "type": "text",
      "openai": {
        "temperature": 1,
        "max_tokens": 1,
        "max_completion_tokens": 1,
        "frequency_penalty": 1,
        "presence_penalty": 1,
        "top_p": 1,
        "seed": 1,
        "reasoning_effort": "low"
      }
    },
    "tools": {
      "type": "text",
      "tools": [
        {
          "type": "text",
          "function": {
            "name": "text",
            "description": "text",
            "parameters": {
              "ANY_ADDITIONAL_PROPERTY": "anything"
            },
            "strict": true
          }
        }
      ],
      "tool_choice": {
        "type": "text"
      },
      "disable_parallel_tool_calls": true
    },
    "response_format": {
      "type": "text",
      "json_schema": {
        "name": "text",
        "description": "text",
        "schema": {
          "ANY_ADDITIONAL_PROPERTY": "anything"
        },
        "strict": true
      }
    },
    "id": "text"
  }
}

Get latest prompt version

get

Retrieve the most recent version of a specific prompt.

Path parameters
prompt_identifierstringRequired

The identifier of the prompt, i.e. name or ID.

Responses
200
The latest version of the specified prompt
application/json
403
Forbidden
text/plain
404
Not Found
text/plain
422
Unprocessable Entity
text/plain
get
GET /v1/prompts/{prompt_identifier}/latest HTTP/1.1
Host: 
Accept: */*
{
  "data": {
    "description": "text",
    "model_provider": "OPENAI",
    "model_name": "text",
    "template": {
      "type": "text",
      "messages": [
        {
          "role": "user",
          "content": "text"
        }
      ]
    },
    "template_type": "STR",
    "template_format": "MUSTACHE",
    "invocation_parameters": {
      "type": "text",
      "openai": {
        "temperature": 1,
        "max_tokens": 1,
        "max_completion_tokens": 1,
        "frequency_penalty": 1,
        "presence_penalty": 1,
        "top_p": 1,
        "seed": 1,
        "reasoning_effort": "low"
      }
    },
    "tools": {
      "type": "text",
      "tools": [
        {
          "type": "text",
          "function": {
            "name": "text",
            "description": "text",
            "parameters": {
              "ANY_ADDITIONAL_PROPERTY": "anything"
            },
            "strict": true
          }
        }
      ],
      "tool_choice": {
        "type": "text"
      },
      "disable_parallel_tool_calls": true
    },
    "response_format": {
      "type": "text",
      "json_schema": {
        "name": "text",
        "description": "text",
        "schema": {
          "ANY_ADDITIONAL_PROPERTY": "anything"
        },
        "strict": true
      }
    },
    "id": "text"
  }
}

Add tag to prompt version

post

Add a new tag to a specific prompt version. Tags help identify and categorize different versions of a prompt.

Path parameters
prompt_version_idstringRequired

The ID of the prompt version.

Body
namestringRequiredPattern: ^[a-z0-9]([_a-z0-9-]*[a-z0-9])?$
descriptionany ofOptional
stringOptional
or
nullOptional
Responses
204
No content returned on successful tag creation
403
Forbidden
text/plain
404
Not Found
text/plain
422
Unprocessable Entity
text/plain
post
POST /v1/prompt_versions/{prompt_version_id}/tags HTTP/1.1
Host: 
Content-Type: application/json
Accept: */*
Content-Length: 36

{
  "name": "text",
  "description": "text"
}

No content

List prompt version tags

get

Retrieve all tags associated with a specific prompt version. Tags are used to identify and categorize different versions of a prompt.

Path parameters
prompt_version_idstringRequired

The ID of the prompt version.

Query parameters
cursorany ofOptional

Cursor for pagination (base64-encoded promptVersionTag ID)

stringOptional
or
nullOptional
limitintegerOptional

The max number of tags to return at a time.

Default: 100
Responses
200
A list of tags associated with the prompt version
application/json
403
Forbidden
text/plain
404
Not Found
text/plain
422
Unprocessable Entity
text/plain
get
GET /v1/prompt_versions/{prompt_version_id}/tags HTTP/1.1
Host: 
Accept: */*
{
  "data": [
    {
      "name": "text",
      "description": "text",
      "id": "text"
    }
  ],
  "next_cursor": "text"
}

Get prompt version by ID

get

Retrieve a specific prompt version using its unique identifier. A prompt version contains the actual template and configuration.

Path parameters
prompt_version_idstringRequired

The ID of the prompt version.

Responses
200
The requested prompt version
application/json
403
Forbidden
text/plain
404
Not Found
text/plain
422
Unprocessable Entity
text/plain
get
GET /v1/prompt_versions/{prompt_version_id} HTTP/1.1
Host: 
Accept: */*
{
  "data": {
    "description": "text",
    "model_provider": "OPENAI",
    "model_name": "text",
    "template": {
      "type": "text",
      "messages": [
        {
          "role": "user",
          "content": "text"
        }
      ]
    },
    "template_type": "STR",
    "template_format": "MUSTACHE",
    "invocation_parameters": {
      "type": "text",
      "openai": {
        "temperature": 1,
        "max_tokens": 1,
        "max_completion_tokens": 1,
        "frequency_penalty": 1,
        "presence_penalty": 1,
        "top_p": 1,
        "seed": 1,
        "reasoning_effort": "low"
      }
    },
    "tools": {
      "type": "text",
      "tools": [
        {
          "type": "text",
          "function": {
            "name": "text",
            "description": "text",
            "parameters": {
              "ANY_ADDITIONAL_PROPERTY": "anything"
            },
            "strict": true
          }
        }
      ],
      "tool_choice": {
        "type": "text"
      },
      "disable_parallel_tool_calls": true
    },
    "response_format": {
      "type": "text",
      "json_schema": {
        "name": "text",
        "description": "text",
        "schema": {
          "ANY_ADDITIONAL_PROPERTY": "anything"
        },
        "strict": true
      }
    },
    "id": "text"
  }
}

List all users

get

Retrieve a paginated list of all users in the system.

Query parameters
cursorstringOptional

Cursor for pagination (base64-encoded user ID)

limitintegerOptional

The max number of users to return at a time.

Default: 100
Responses
200
A list of users.
application/json
403
Forbidden
text/plain
422
Unprocessable Entity
text/plain
get
GET /v1/users HTTP/1.1
Host: 
Accept: */*
{
  "data": [
    {
      "id": "text",
      "created_at": "2025-06-05T11:50:52.230Z",
      "updated_at": "2025-06-05T11:50:52.230Z",
      "email": "text",
      "username": "text",
      "role": "SYSTEM",
      "auth_method": "text",
      "password": "text",
      "password_needs_reset": true
    }
  ],
  "next_cursor": "text"
}

Delete a user by ID

delete

Delete an existing user by their unique GlobalID.

Path parameters
user_idstringRequired

The GlobalID of the user (e.g. 'VXNlcjox').

Responses
204
No content returned on successful deletion.
403
Cannot delete the default admin or system user
text/plain
404
User not found.
text/plain
422
Unprocessable Entity
text/plain
delete
DELETE /v1/users/{user_id} HTTP/1.1
Host: 
Accept: */*

No content

Create a new user

post

Create a new user with the specified configuration.

Body
userone ofRequired
or
send_welcome_emailbooleanOptionalDefault: true
Responses
201
The newly created user.
application/json
400
Role not found.
text/plain
403
Forbidden
text/plain
409
Username or email already exists.
text/plain
422
Unprocessable Entity
text/plain
post
POST /v1/users HTTP/1.1
Host: 
Content-Type: application/json
Accept: */*
Content-Length: 124

{
  "user": {
    "email": "text",
    "username": "text",
    "role": "SYSTEM",
    "auth_method": "text",
    "password": "text"
  },
  "send_welcome_email": true
}
{
  "data": {
    "id": "text",
    "created_at": "2025-06-05T11:50:52.230Z",
    "updated_at": "2025-06-05T11:50:52.230Z",
    "email": "text",
    "username": "text",
    "role": "SYSTEM",
    "auth_method": "text",
    "password": "text",
    "password_needs_reset": true
  }
}

List experiments by dataset

get
Path parameters
dataset_idstringRequired
Responses
200
Experiments retrieved successfully
application/json
403
Forbidden
text/plain
422
Validation Error
application/json
get
GET /v1/datasets/{dataset_id}/experiments HTTP/1.1
Host: 
Accept: */*
{
  "data": [
    {
      "id": "text",
      "dataset_id": "text",
      "dataset_version_id": "text",
      "repetitions": 1,
      "metadata": {
        "ANY_ADDITIONAL_PROPERTY": "anything"
      },
      "project_name": "text",
      "created_at": "2025-06-05T11:50:52.230Z",
      "updated_at": "2025-06-05T11:50:52.230Z"
    }
  ]
}

Create experiment on a dataset

post
Path parameters
dataset_idstringRequired
Body

Details of the experiment to be created

nameany ofOptional

Name of the experiment (if omitted, a random name will be generated)

stringOptional
or
nullOptional
descriptionany ofOptional

An optional description of the experiment

stringOptional
or
nullOptional
metadataany ofOptional

Metadata for the experiment

or
nullOptional
version_idany ofOptional

ID of the dataset version over which the experiment will be run (if omitted, the latest version will be used)

stringOptional
or
nullOptional
repetitionsintegerOptional

Number of times the experiment should be repeated for each example

Default: 1
Responses
200
Experiment retrieved successfully
application/json
403
Forbidden
text/plain
404
Dataset or DatasetVersion not found
text/plain
422
Validation Error
application/json
post
POST /v1/datasets/{dataset_id}/experiments HTTP/1.1
Host: 
Content-Type: application/json
Accept: */*
Content-Length: 122

{
  "name": "text",
  "description": "text",
  "metadata": {
    "ANY_ADDITIONAL_PROPERTY": "anything"
  },
  "version_id": "text",
  "repetitions": 1
}
{
  "data": {
    "id": "text",
    "dataset_id": "text",
    "dataset_version_id": "text",
    "repetitions": 1,
    "metadata": {
      "ANY_ADDITIONAL_PROPERTY": "anything"
    },
    "project_name": "text",
    "created_at": "2025-06-05T11:50:52.230Z",
    "updated_at": "2025-06-05T11:50:52.230Z"
  }
}

Get experiment by ID

get
Path parameters
experiment_idstringRequired
Responses
200
Experiment retrieved successfully
application/json
403
Forbidden
text/plain
404
Experiment not found
text/plain
422
Validation Error
application/json
get
GET /v1/experiments/{experiment_id} HTTP/1.1
Host: 
Accept: */*
{
  "data": {
    "id": "text",
    "dataset_id": "text",
    "dataset_version_id": "text",
    "repetitions": 1,
    "metadata": {
      "ANY_ADDITIONAL_PROPERTY": "anything"
    },
    "project_name": "text",
    "created_at": "2025-06-05T11:50:52.230Z",
    "updated_at": "2025-06-05T11:50:52.230Z"
  }
}

Download experiment runs as a JSON file

get
Path parameters
experiment_idstringRequired
Responses
200
Successful Response
text/plain
Responsestring
403
Forbidden
text/plain
404
Experiment not found
text/plain
422
Validation Error
application/json
get
GET /v1/experiments/{experiment_id}/json HTTP/1.1
Host: 
Accept: */*
text

Download experiment runs as a CSV file

get
Path parameters
experiment_idstringRequired
Responses
200
Successful Response
Responseany
403
Forbidden
text/plain
422
Validation Error
application/json
get
GET /v1/experiments/{experiment_id}/csv HTTP/1.1
Host: 
Accept: */*

No content

Create span annotations

post
Query parameters
syncbooleanOptional

If true, fulfill request synchronously.

Default: false
Body
Responses
200
Span annotations inserted successfully
application/json
403
Forbidden
text/plain
404
Span not found
text/plain
422
Validation Error
application/json
post
POST /v1/span_annotations HTTP/1.1
Host: 
Content-Type: application/json
Accept: */*
Content-Length: 189

{
  "data": [
    {
      "span_id": "text",
      "name": "text",
      "annotator_kind": "LLM",
      "result": {
        "label": "text",
        "score": 1,
        "explanation": "text"
      },
      "metadata": {
        "ANY_ADDITIONAL_PROPERTY": "anything"
      },
      "identifier": ""
    }
  ]
}
{
  "data": [
    {
      "id": "text"
    }
  ]
}

List datasets

get
Query parameters
cursorany ofOptional

Cursor for pagination

stringOptional
or
nullOptional
nameany ofOptional

An optional dataset name to filter by

stringOptional
or
nullOptional
limitintegerOptional

The max number of datasets to return at a time.

Default: 10
Responses
200
Successful Response
application/json
403
Forbidden
text/plain
422
Unprocessable Entity
text/plain
get
GET /v1/datasets HTTP/1.1
Host: 
Accept: */*
{
  "data": [
    {
      "id": "text",
      "name": "text",
      "description": "text",
      "metadata": {
        "ANY_ADDITIONAL_PROPERTY": "anything"
      },
      "created_at": "2025-06-05T11:50:52.230Z",
      "updated_at": "2025-06-05T11:50:52.230Z"
    }
  ],
  "next_cursor": "text"
}

Get dataset by ID

get
Path parameters
idstringRequired

The ID of the dataset

Responses
200
Successful Response
application/json
403
Forbidden
text/plain
404
Not Found
text/plain
422
Validation Error
application/json
get
GET /v1/datasets/{id} HTTP/1.1
Host: 
Accept: */*
{
  "data": {
    "id": "text",
    "name": "text",
    "description": "text",
    "metadata": {
      "ANY_ADDITIONAL_PROPERTY": "anything"
    },
    "created_at": "2025-06-05T11:50:52.230Z",
    "updated_at": "2025-06-05T11:50:52.230Z",
    "example_count": 1
  }
}

Delete dataset by ID

delete
Path parameters
idstringRequired

The ID of the dataset to delete.

Responses
204
Successful Response
403
Forbidden
text/plain
404
Dataset not found
text/plain
422
Invalid dataset ID
text/plain
delete
DELETE /v1/datasets/{id} HTTP/1.1
Host: 
Accept: */*

No content

List dataset versions

get
Path parameters
idstringRequired

The ID of the dataset

Query parameters
cursorany ofOptional

Cursor for pagination

stringOptional
or
nullOptional
limitintegerOptional

The max number of dataset versions to return at a time

Default: 10
Responses
200
Successful Response
application/json
403
Forbidden
text/plain
422
Unprocessable Entity
text/plain
get
GET /v1/datasets/{id}/versions HTTP/1.1
Host: 
Accept: */*
{
  "data": [
    {
      "version_id": "text",
      "description": "text",
      "metadata": {
        "ANY_ADDITIONAL_PROPERTY": "anything"
      },
      "created_at": "2025-06-05T11:50:52.230Z"
    }
  ],
  "next_cursor": "text"
}

Upload dataset from JSON, CSV, or PyArrow

post
Query parameters
syncbooleanOptional

If true, fulfill request synchronously and return JSON containing dataset_id.

Default: false
Body
actionstring · enumOptionalPossible values:
namestringRequired
descriptionstringOptional
inputsobject[]Required
outputsobject[]Optional
metadataobject[]Optional
Responses
200
Successful Response
application/json
Responseany of
or
nullOptional
403
Forbidden
text/plain
409
Dataset of the same name already exists
text/plain
422
Invalid request body
text/plain
post
POST /v1/datasets/upload HTTP/1.1
Host: 
Content-Type: application/json
Accept: */*
Content-Length: 99

{
  "action": "create",
  "name": "text",
  "description": "text",
  "inputs": [
    {}
  ],
  "outputs": [
    {}
  ],
  "metadata": [
    {}
  ]
}
{
  "data": {
    "dataset_id": "text",
    "version_id": "text"
  }
}

Get examples from a dataset

get
Path parameters
idstringRequired

The ID of the dataset

Query parameters
version_idany ofOptional

The ID of the dataset version (if omitted, returns data from the latest version)

stringOptional
or
nullOptional
Responses
200
Successful Response
application/json
403
Forbidden
text/plain
404
Not Found
text/plain
422
Validation Error
application/json
get
GET /v1/datasets/{id}/examples HTTP/1.1
Host: 
Accept: */*
{
  "data": {
    "dataset_id": "text",
    "version_id": "text",
    "examples": [
      {
        "id": "text",
        "input": {
          "ANY_ADDITIONAL_PROPERTY": "anything"
        },
        "output": {
          "ANY_ADDITIONAL_PROPERTY": "anything"
        },
        "metadata": {
          "ANY_ADDITIONAL_PROPERTY": "anything"
        },
        "updated_at": "2025-06-05T11:50:52.230Z"
      }
    ]
  }
}

Download dataset examples as CSV file

get
Path parameters
idstringRequired

The ID of the dataset

Query parameters
version_idany ofOptional

The ID of the dataset version (if omitted, returns data from the latest version)

stringOptional
or
nullOptional
Responses
200
Successful Response
text/csv
Responsestring
403
Forbidden
text/plain
422
Unprocessable Entity
text/plain
get
GET /v1/datasets/{id}/csv HTTP/1.1
Host: 
Accept: */*
text

Download dataset examples as OpenAI fine-tuning JSONL file

get
Path parameters
idstringRequired

The ID of the dataset

Query parameters
version_idany ofOptional

The ID of the dataset version (if omitted, returns data from the latest version)

stringOptional
or
nullOptional
Responses
200
Successful Response
text/plain
Responsestring
403
Forbidden
text/plain
422
Invalid dataset or version ID
text/plain
get
GET /v1/datasets/{id}/jsonl/openai_ft HTTP/1.1
Host: 
Accept: */*
text

Download dataset examples as OpenAI evals JSONL file

get
Path parameters
idstringRequired

The ID of the dataset

Query parameters
version_idany ofOptional

The ID of the dataset version (if omitted, returns data from the latest version)

stringOptional
or
nullOptional
Responses
200
Successful Response
text/plain
Responsestring
403
Forbidden
text/plain
422
Invalid dataset or version ID
text/plain
get
GET /v1/datasets/{id}/jsonl/openai_evals HTTP/1.1
Host: 
Accept: */*
text

Add span, trace, or document evaluations

post
Header parameters
content-typeany ofOptional
stringOptional
or
nullOptional
content-encodingany ofOptional
stringOptional
or
nullOptional
Body
string · binaryOptional
Responses
204
Successful Response
403
Forbidden
text/plain
415
Unsupported content type, only gzipped protobuf and pandas-arrow are supported
text/plain
422
Unprocessable Entity
text/plain
post
POST /v1/evaluations HTTP/1.1
Host: 
Content-Type: application/x-protobuf
Accept: */*
Content-Length: 8

"binary"

No content

Get span, trace, or document evaluations from a project

get
Query parameters
project_nameany ofOptional

The name of the project to get evaluations from (if omitted, evaluations will be drawn from the default project)

stringOptional
or
nullOptional
Responses
200
Successful Response
application/json
Responseany
403
Forbidden
text/plain
404
Not Found
text/plain
422
Validation Error
application/json
get
GET /v1/evaluations HTTP/1.1
Host: 
Accept: */*

No content

Create a new project

post

Create a new project with the specified configuration.

Body
namestring · min: 1Required
descriptionany ofOptional
stringOptional
or
nullOptional
Responses
200
The newly created project
application/json
403
Forbidden
text/plain
422
Unprocessable Entity
text/plain
post
POST /v1/projects HTTP/1.1
Host: 
Content-Type: application/json
Accept: */*
Content-Length: 36

{
  "name": "text",
  "description": "text"
}
{
  "data": {
    "name": "text",
    "description": "text",
    "id": "text"
  }
}

List all projects

get

Retrieve a paginated list of all projects in the system.

Query parameters
cursorany ofOptional

Cursor for pagination (project ID)

stringOptional
or
nullOptional
limitintegerOptional

The max number of projects to return at a time.

Default: 100
include_experiment_projectsbooleanOptional

Include experiment projects in the response. Experiment projects are created from running experiments.

Default: false
Responses
200
A list of projects with pagination information
application/json
403
Forbidden
text/plain
422
Unprocessable Entity
text/plain
get
GET /v1/projects HTTP/1.1
Host: 
Accept: */*
{
  "data": [
    {
      "name": "text",
      "description": "text",
      "id": "text"
    }
  ],
  "next_cursor": "text"
}

Get project by ID or name

get

Retrieve a specific project using its unique identifier: either project ID or project name. Note: When using a project name as the identifier, it cannot contain slash (/), question mark (?), or pound sign (#) characters.

Path parameters
project_identifierstringRequired

The project identifier: either project ID or project name. If using a project name, it cannot contain slash (/), question mark (?), or pound sign (#) characters.

Responses
200
The requested project
application/json
403
Forbidden
text/plain
404
Not Found
text/plain
422
Unprocessable Entity
text/plain
get
GET /v1/projects/{project_identifier} HTTP/1.1
Host: 
Accept: */*
{
  "data": {
    "name": "text",
    "description": "text",
    "id": "text"
  }
}

Update a project by ID or name

put

Update an existing project with new configuration. Project names cannot be changed. The project identifier is either project ID or project name. Note: When using a project name as the identifier, it cannot contain slash (/), question mark (?), or pound sign (#) characters.

Path parameters
project_identifierstringRequired

The project identifier: either project ID or project name. If using a project name, it cannot contain slash (/), question mark (?), or pound sign (#) characters.

Body
descriptionany ofOptional
stringOptional
or
nullOptional
Responses
200
The updated project
application/json
403
Forbidden
text/plain
404
Not Found
text/plain
422
Unprocessable Entity
text/plain
put
PUT /v1/projects/{project_identifier} HTTP/1.1
Host: 
Content-Type: application/json
Accept: */*
Content-Length: 22

{
  "description": "text"
}
{
  "data": {
    "name": "text",
    "description": "text",
    "id": "text"
  }
}

Delete a project by ID or name

delete

Delete an existing project and all its associated data. The project identifier is either project ID or project name. The default project cannot be deleted. Note: When using a project name as the identifier, it cannot contain slash (/), question mark (?), or pound sign (#) characters.

Path parameters
project_identifierstringRequired

The project identifier: either project ID or project name. If using a project name, it cannot contain slash (/), question mark (?), or pound sign (#) characters.

Responses
204
No content returned on successful deletion
403
Forbidden
text/plain
404
Not Found
text/plain
422
Unprocessable Entity
text/plain
delete
DELETE /v1/projects/{project_identifier} HTTP/1.1
Host: 
Accept: */*

No content