
Machine Learning
Observability 101
A comprehensive guide on how to move beyond
mere model monitoring

Introduction ... 1

What is ML Observability? .. 2

Understanding Model Failure Modes ... 5

ML Observability: Best Practices ... 10

 Model

 Performance ... 10

 Explainability ... 19

 Data

 Data Quality .. 26

 Drift .. 31

 Service

 Service Health & Reliability ...37

 Service-Level Performance Monitoring ..46

Conclusion .. 50

Table of contents

Machine Learning Observability 101 | Page 1

O
b

se
rv

ab
ili

ty
 10

1Introduction
AI is everywhere. With global business spending on artificial intelligence (AI)
and machine learning (ML) forecast to eclipse $200 billion by 2025, enterprises
are urgently deploying models across nearly every facet of their businesses.
Arize AI—a pioneer and early leader in ML observability—tracks billions of ML
model predictions daily that influence everything from how crops are harvested
to a customer’s experience in a fast-food drive-through, including whether the
credit card transaction gets approved.

Given the high stakes for both companies
and society at large, it’s more important
than ever to have software that helps
humans understand AI—and know how
to fix it when it breaks. That is why Arize AI
exists: to help teams troubleshoot the most
complex systems ever built and provide
guardrails when those systems make high-
stakes decisions.

ML observability is how that mission is
accomplished and the topic of this ebook.
While ML monitoring alerts you when the
performance of your model is degrading,
ML observability helps you get to the
bottom of why—a bigger, harder problem.

With ML observability, companies gain
insight into model and feature drift
detection, input and output data quality,
model performance, and explainability.
When problems arise, ML observability
gives practitioners the ability to pinpoint
why a model’s performance is not as
expected in production as well as clear
signals for when they should retrain their
model, update their training datasets, add
new features to their model, or even go
back to the drawing board.

https://www.wsj.com/articles/world-wide-ai-spending-expected-to-double-in-next-four-years-11598520600

Machine Learning Observability 101 | Page 2

O
b

se
rv

ab
ili

ty
 10

1What is ML Observability?
ML Observability is the practice of obtaining a deep understanding of a model’s
performance across all stages of the model development cycle: as it’s being built,
once it’s been deployed, and long into its life in production.

In practice, ML observability is often the key difference between a team that flies
blind after deploying a model and a team that can iterate and improve on their
models quickly.

Is Model Observability just a fancy word for ML monitoring?

Model observability begins with the process of collecting model evaluations
in environments such as training, validation, and production, then tying them
together with analytics that allows one to connect these points to solve ML
engineering problems. These inferences are stored in a model evaluation store
(credit to Josh Tobin for this term), which hosts the raw inference data.
An evaluation store holds the response of the model, a signature of the model
decisions, to every piece of input data for every model version, in
every environment.

An ML observability platform allows teams to analyze model degradation and
to root cause any issues that arise. This ability to diagnose the root cause of a
model’s issues, by connecting points across validation and production, is what
differentiates model observability from traditional model monitoring. While
model monitoring consists of setting up alerts on key model performance
metrics such as accuracy, or drift, model observability implies a higher objective
of getting to the bottom of any regressions in performance or anomalous
behavior. We are interested in the why. Monitoring is interested in only
aggregates and alerts. Observability is interested in what we can infer from the
model’s predictions, explainability insights, the production feature data, and
the training data, to understand the cause behind model actions and build
workflows to improve.

Machine Learning Observability 101 | Page 3

O
b

se
rv

ab
ili

ty
 10

1

ML Observability backed by an Evaluation Store:

• Move seamlessly between production, training, and validation dataset
environments

• Natively support model evaluation analysis by environment
• Designed to analyze performance Facets/Slices of predictions
• Explainability attribution designed for troubleshooting and regulatory analysis
• Performance analysis with ground truth—Accuracy, F1, MAE
• Proxy performance without ground truth—prediction drift
• Distribution drift analysis between data sets and environments
• Designed to answer the why behind performance changes
• Integrated validation
• Architected to iterate and improve

Machine Learning Observability 101 | Page 4

O
b

se
rv

ab
ili

ty
 10

1How does ML observability differ from data and software application observability?

It’s also worth noting that ML observability is distinct from its equivalents in the
world of software or data applications. Data observability, for example, typically
uses tables as the base for monitoring and examines data and schema changes
to get to the bottom of issues. Software or infrastructure observability traces
and troubleshoots response times for a given app or system. Machine learning
observability, in contrast, treats models as the base of monitoring and sets
baselines from training, validation, or prior time periods in production to then
compare shifts, perform analysis and root cause performance degradation.

Machine Learning Observability 101 | Page 5

O
b

se
rv

ab
ili

ty
 10

1Understanding Model Failure Modes
Once bought into the need for observability for detecting and diagnosing
regressions in models, a question naturally arises: what should I monitor in
production? The answer, of course, depends on what can go wrong.

In this section, we will be providing some more concrete examples of potential
failure modes along with the most common symptoms that they exhibit in your
production model’s performance.

As with most things in the world, a model’s task is likely to change over time.
Concept Drift or Model Drift is a model failure mode that is caused by shifts
in the underlying task that a model performs, which can gradually or suddenly
cause a regression in the model’s performance.

Concept Drift Example

To put it a bit differently, the task that your model was trained to solve may not
accurately reflect the task it is now faced in production.

For example, imagine that you are trying to predict the sentiment of a particular
movie review and your model was trained on reviews from the early 1970s. If your
model is any good, it has probably learned that the review, “Wow that movie was
‘bad’”, carries negative sentiment; however fast forward into the world of 1980s
slang, and that exact same review might mean that the movie was fantastic.

So the input to the model didn’t change, but the result did—what happened?
The fundamental task of mapping natural language to sentiment has shifted
since the model was trained, causing the model to start making mistakes where
it used to predict correctly.

Machine Learning Observability 101 | Page 6

O
b

se
rv

ab
ili

ty
 10

1This shift can happen gradually over time, but as we are too often reminded
these days, the world doesn’t always change gradually. This fundamental
unpredictability about when exactly concept drift is going to happen
necessitates a good suite of model monitoring tools.

If you notice that not much has changed in the distribution of your model
inputs, yet your model performance is regressing, concept drift may be a
contributing factor.

Data lies at the very center of model creation, and data practices can make or
break how a model performs in production. In the real world, the distribution of
your model’s inputs are almost certain to change over time, which leads us to
our next model failure mode: Data Drift or Feature Drift.

Feature Drifting
from Training
Let’s imagine you’ve
just deployed a model
that predicts how many
streams an album
is going to get in its
first day on Spotify or
Apple Music. Now that
your model has been
deployed to production
for a while, and has been correctly predicting Drake’s meteoric smash hits, you
start to notice that your model is starting to make some dramatic mistakes.

Feature Drift Causing Model Performance Issues
After some inspection
you notice that some
new artists and trendy
genres are attracting a
majority of the streams,
and your model is
making large mistakes
on these albums.

So what could have
possibly gone wrong?

Machine Learning Observability 101 | Page 7

O
b

se
rv

ab
ili

ty
 10

1The distribution in your model’s inputs are statistically different from the
distribution on which it was trained. In other words, your data has drifted and
your model is now out of date. Just like concept drift, data drift can creep up on
your model slowly or hit it hard and fast.

One important thing to mention is that it’s quite common to confuse data drift
with training-prod skew. Training-prod skew is when the distribution of your
training data differs meaningfully from the distribution of production data.
Going back to our previous example, if you had only trained your album model
with country music, it will likely not perform well when it sees a new jazz album
hit the discovery tab.

Training-
production Skew
In both the case of
data drift and training-
prod skew, the model
is experiencing a
distribution of model
inputs in production
that it did not see while
training, which can lead
to worse performance
than when validating the
model. So how can we
tell the difference?

If your model is unable to achieve close to its validation performance as soon as
you deploy you model, you likely are facing training-prod skew, and you might
want to rethink your data sampling techniques to curate a more representative
dataset; however if your model match has exhibited good production results
in the past and you are seeing a slow or sudden dip in performance, it’s very
possible that you are dealing with the effects of data drift.

Cascading Model Failures
As machine learned models take the world by storm, it has become more
and more common for products to contain a number of machine learned
components. In many cases the output of one model is even used directly or
indirectly as an input to another model.

Since these models are often trained and validated separately on their own
datasets, a head-scratching failure mode is bound to pop up. While both models’
performance can improve in their offline validation performance, they can
regress the product as a whole when deployed together.

Training vs Production

Machine Learning Observability 101 | Page 8

O
b

se
rv

ab
ili

ty
 10

1To demonstrate this concept, let’s pretend that you work on Alexa. Your team is
responsible for a speech recognition model that transcribes a user’s speech into
text, while a partner team is responsible for classifying these transcribed queries
into an action that Alexa can perform for the user.

One day, you discover a breakthrough that improves your team’s speech
recognition results by 10% on the validation datasets; however, when you get back
to your desk the next day after deploying the updated model you see a huge
regression in Alexa’s accuracy in selecting the action that the user requested.

What happened? Well, in making this change to the speech recognition model,
the output distribution of the transcribed utterances changed in a statistically
significant way. Since these outputs are the inputs to the action classification
model, this caused the action predictions to regress, causing your users to sit
through a terrible song when they just wanted to set a timer.

To diagnose these cascading model failures, a model observability tool must be
able to track the changes to the input and output distributions of each model to
be able pinpoint which model introduced the regression in overall performance.

In the previous sections we have been primarily concerned with group statistics
surrounding the model’s performance; however, sometimes how your model is
performing on a few examples is more concerning.

In an ideal world, there would be no surprises when you deploy your model to
production. Unfortunately, we do not live in an ideal world. Your model will likely
face anomalous inputs and occasionally produce anomalous results.

Sometimes finding these examples are like finding a needle in a haystack. You
can’t address the underlying problem in your model if you can’t find it.

Outlier: Lower Dimensional Mapping
Understanding outliers is typically viewed as
a multivariate analysis across all of the input
features finding individual predictions that are
outliers. Contrast this with the drift description
above which is really a general statistic of a
single feature over a group of predictions.

Drift: Group of Predictions—Univariate statistic
on a feature or model output

Outlier: Individual Prediction or Small Group of
Predictions—Multivariate analysis across features

Machine Learning Observability 101 | Page 9

O
b

se
rv

ab
ili

ty
 10

1Model owners need a line of defense to detect and protect against these nasty
inputs. One technique to accomplish this is to employ an unsupervised learning
method to categorize model inputs and predictions, allowing you to discover
cohorts of anomalous examples and predictions.

This is where model observability tools shine in helping you tighten your training,
evaluating, deploying, and monitoring loop.

If you are seeing a number of examples that don’t fit well into the groups of the
more prototypical examples, this could be evidence of some edge cases your
model has never seen. In either case these examples may be good candidates for
you to include and potentially upsample in your training to shore up these gaps.

Anomalous examples can occur just by chance, but they can also be generated
by an adversary who is trying to trick your model. In many business critical
applications, especially in the financial sector, model owners have to be hyper-
vigilant to monitor for adversarial inputs that are designed to make a model
behave in a certain way.

In 2018, Google brought attention to adversarial attacks on machine learned
image classification models by demonstrating how a small amount of noise,
imperceptible to the human eye, added to an image could cause the model to
wildly misclassify.

In applications where every hour counts, the speed in which you can identify a
new attack, patch the vulnerability, and redeploy your model may make all the
difference in the success of your business.

In summary, there are a number of model failure modes to be on the lookout
for, and they rarely affect your model in isolation. To piece together why
your model’s performance may have degraded or why your model is
behaving erratically in particular cases, you must have the proper
measurements to deduce what’s going on. Model monitoring
tools fill this role in the machine learning workflow and
empower teams to constantly improve models after
they’ve been shipped into the world.

Machine Learning Observability 101 | Page 10

M
od

el

Performance analysis of production models can be complex, and every situation
comes with its own set of challenges. Unfortunately, not every model application
scenario has an obvious path to measuring performance like the toy problems
that are taught in school.

This section will cover a number of challenges connected to availability of ground
truth and discuss the performance metrics that are available to measure models
in each scenario.

The ideal ML deployment scenario, often what they teach you in the classroom,
is when you get fast actionable and fast performance information back on the
model as soon as you deploy your model to production.

This ideal view looks something like this:

Model Performance

ML Observability: Best Practices
There are several components that are needed to make a model work
successfully: the service that actually renders the model, the data that is flowing
in and out of the model—including features and predictions—and the model
itself. Each of these components need to be working as expected in order for any
model to be successful.

A failure in any of these components—say, concept drift causing performance
degradation—can negatively impact the very business results that the model
was designed to improve. Therefore, we need to measure all of these to have a
complete picture. The sections below break out best practices across each, diving
into model performance, data quality, drift, explainability and service health.

Ground Truth in Production

Machine Learning Observability 101 | Page 11

M
od

el

In this example ground truth is surfaced to you for every prediction and there
is a direct link between predictions and ground truth, allowing you to directly
analyze the performance of your model in production.

There are many industries that are lucky enough to face this ideal scenario.
This is the case in digital advertising where a model attempts to predict which
ad a consumer is most likely to engage with. Almost immediately after the
prediction is made, the ground truth, whether they clicked or not,
is determined.

For another example of this ideal scenario we can take a look at predicting food
delivery estimates. As soon as the Pizza has arrived at the hungry customer’s
house, you know how well your model did.

Once you have this latent ground truth linked back to your prediction event,
model performance metrics can easily be calculated and tracked. The best
model metric to use primarily depends on the type of the type of model and
the distribution of the data it’s predicting over. Here are a few common model
performance metrics:

Accuracy: General overall accuracy is a common statistic useful when classes
are balanced.

Recall: Useful for unbalanced classes. What fraction of overall positives did I
get correct.

Precision: Useful for unbalanced classes. What fraction of positive
identifications were correct.

F1: Useful for unbalanced classes and allows for analysis of trade off between
Recall and Precision.

MAE or MAPE: Regression or Numeric Metric performance analysis. MAPE can
be good when the percent of how far off you are matters.

Once a model metric is determined, tracking this metric on a daily or a
weekly cadence allows you to make certain that performance has not
degraded drastically from when it was trained or when it was initially
promoted to production.

However as you have surely predicted by now, this ideal scenario is the
exception and not the rule. In many real world environments access to ground
truth can vary greatly, and with it the way the tools you have at your disposal to
monitor your models.

Machine Learning Observability 101 | Page 12

M
od

el

While many applications enjoy realtime ground truth for their model’s
predictions, many model application scenarios have to wait a while to know how
their model should have behaved in production.

Imagine you are trying to predict which of your customers are creditworthy and
which ones of them are likely to default on a loan. You likely won’t know if you
made a good decision until the loan is paid off or the customer defaults. This
makes it tricky to ensure that your model is behaving as expected.

This delay in receiving ground truth can also not have a fixed time scale. Take,
for example, trying to classify which credit card transactions are fraudulent. You
likely won’t know if a transaction was truly fraudulent until you get a customer
report claiming that their card was stolen. This can happen a couple of days,
weeks, or even months after the transaction cleared.

In these cases, and a number of others, the model owner has a significant time
horizon for receiving ground truth results for their model’s predictions.

Ground Truth - 2 Month Lag

In this above diagram, while we do see that ground truth for the model is
eventually determined, the model’s predictions over the last month have not
received their corresponding outcomes.

When this ground truth delay is small enough, this scenario doesn’t differ too
substantially from real time ground truth, as there is still a reasonable cadence
for the model owner to measure performance metrics and update the model
accordingly as one would do in the realtime ground truth scenario.

However, in systems where there is a significant delay in receiving ground truth,
teams may need to turn to proxy metrics. Proxy metrics are alternative signals
that are correlated with the ground truth that you’re trying to approximate.
For example, imagine you using a model to which consumers are most likely
to default on their credit card debt. A potential proxy metric for success in this

Machine Learning Observability 101 | Page 13

M
od

el

scenario might be the percentage of consumers you have lent credit to that
make a late payment.

So while you don’t have access to ground truth yet, you can start to see how
the proxy metrics that you can compute in the meantime change over time to
measure how your model is performing.

Proxy metrics serve as a powerful tool in the face of delayed ground truth as they
give a more up to date indicator of how your model is performing.

Case 3: Causal Influence on Ground Truth (Biased Ground Truth)
One important thing to note is that not all ground truth is created equal. There
are some cases where teams receive real time ground truth; however, the
model’s decisions substantially affect the outcome.

Prediction of Credit Cohort

In this example, we are trying to predict who is credit worthy enough to receive
a loan. This becomes tricky because when you decline someone’s credit, you no
longer have any information about whether they could have paid you back.

In other words, only the people you decide to give a loan to will result in
outcomes that you can use to train future models on. As a result, we will never
know whether someone the model predicted will default could have actually
paid the loan back in full.

Machine Learning Observability 101 | Page 14

M
od

el

This may lead you to throw your hands in the air and accept that your ground
truth is just going to be biased; however, you do have some tools at your disposal.

Something you can do is create a hold-out set where you don’t follow your
model’s predictions and compare the difference in prediction performance
between this hold-out set and the set using the model’s predictions.

You can use these two sets that received different treatments to look for
validate your models predictions and, in our example’s case, ensure that you’re
not potentially missing a potential set of credit worthy people that your model
was missing.

As someone working with data, you will
most likely see this picture pop up often.
No discussion of bias in data is complete
without a reference to it.

As the story goes, engineers in WW2
created a heatmap of locations where
bullet holes pierced the planes that
came back from battle with the
intention of determining where
to fortify the armor. One day a
statistician named Ahbrahm Wald
noted that the heatmap was only
created from planes that had made
it back from their missions. So, in
fact, the best place to put armor
was probably where the empty
space existed, such as the engines,
as the planes that were hit in these
locations never made it home.

In short: always be conscious of the
bias in your ground truth data.

Machine Learning Observability 101 | Page 15

M
od

el

Case 4: No Ground Truth
This brings us to the worse case scenario for a modeling team: having no ground
truth feedback to connect back to model performance.

In the above example we have ground truth in our validation and training sets to
link back to our model’s predictions; however in production, we have little to no
feedback on how our model is performing.

Again in this scenario proxy metrics for ground truth can be extremely useful.
In the absence of ground truth, if you can find something else that correlates to
ground truth, you can still get a sense of how your model is performing over time.

Outside of proxy ground truth metrics, even when ground truth is hard to collect,
it’s important for teams to find a way to collect a sample of ground truth data.

One way to acquire this ground truth data is to hire human annotators or
labelers to provide feedback on their model’s performance. This approach can
be expensive and time consuming; however, the reward for having a set of high-
quality ground truth data is immense.

In the periods where ground truth is available or has been collected through
manual annotation, performance or lagging performance metrics can be used.
Though these lagging performance metrics are not quite as good at signaling
a sudden model performance regression in a real time application, they still
provide meaningful feedback to ensure that the models performance is moving
in the right direction over time.

No Ground Truth in Production

Machine Learning Observability 101 | Page 16

M
od

el

Drift is a Proxy for Performance
While these lagging performance metrics can’t immediately signal a change
in a model’s performance, measuring the shift in the distribution of prediction
outputs potentially can. A drift occurring in the output prediction can be used to
alert the team of aberrant model behavior even when no ground truth is present.

Some metrics you can use to quantify your prediction drift are distribution
distance metrics, such as: Kullback-Leibler Divergence, Population Stability Index
(PSI), Jensen-Shannon Divergence, etc. For a full guide on using statistical
distances in machine learning, see Arize’s separate white paper on the subject.

Model Metric by Cohort
As much as data scientists like to deal with aggregate optimization statistics the
reality is that models affect different people, customer segments, and business
decisions differently.

Two candidate models with the same accuracies could affect particular sets of
individuals dramatically differently, and these differences can be very important
to your business.

Teams typically divide their data into “slices” or “cohorts”. These cohorts can
be discovered over time or they are built on the fly to debug where a model is
making a disproportionate amount of mistakes.

No Ground Truth in Production

https://arize.com/resource/using-statistical-differences-for-machine-learning/
https://arize.com/resource/using-statistical-differences-for-machine-learning/

Machine Learning Observability 101 | Page 17

M
od

el

In this example above, we see that grouping data based on features such as high
net worth, low FICO scores, and the presence of a recent default provides important
information about how the model is performing for these particular cohorts.

Above the overall accuracy of 90% is really hiding the fact that the model is performing
terribly at predicting credit worthiness for people who have recently defaulted.

Cohort Prediction: Facets/ Slices of Groups

Measuring model performance across cohorts is similar to measuring model
performance in aggregate. Performance should be measured for each
cohort that is important to the business and an alert should be issued when
performance drops below a threshold defined by training or initial model launch.

Machine Learning Observability 101 | Page 18

M
od

el

Measuring Business Outcomes
Now that we have talked about measure model performance by selecting
the right model metrics for your application scenario, let’s briefly talk about
measuring business metrics.

Business metrics go hand in hand with the model metrics and when properly
defined, they should be linked. At the end of the day, you aren’t shipping a F1
score to your customers, and as a result it’s important to keep in touch with how
your models are affecting how each customer is experiencing your product.

Business metrics tend to not be well suited for traditional optimization, yet
they provide key insights into a business goal. Since these metrics are not easy
for a model to optimize for, the optimization problem will be set up using a
parallel metric.

Turning to the credit worthiness example again, while your model might be
optimizing for a traditional model metric such as accuracy or F1, a business
metric you might want to be monitoring is the percentage of people you turn
away from credit.

At the end of the day a product manager on your team might not care about
MAPE, but they will care about how your users are experiencing your product.
Measuring model evaluation metrics doesn’t usually capture how many angry
customers you might have.

As you may have picked up, identifying and measuring business metrics is
an extremely important process for ensuring your effort is being well spent in
improving your product.

In summary, measuring model performance is not one size fits all, and your
business application may require some or all of these measurement techniques
that we discussed.

While the path toward measuring your model’s performance is not always
clear cut, what is clear is that correctly measuring your model’s performance
is essential to ensuring you are shipping a consistent and effective product to
your customers.

Machine Learning Observability 101 | Page 19

M
od

elAs models have increased in complexity, the ability to introspect and understand
why a model made a particular prediction has become more and more difficult.
As a result, it has become even more important that we have the ability to
explain how they make their predictions.
In this section, we will lay out the different levels of ML explainability, and how
each of these can be used across the ML Lifecycle. Lastly we will cover some
common methods that are being used to obtain these levels of explainability.

Explainability in Training
To start, let’s cover how explainability can be used to help during the model
training phase of the machine learning life-cycle. In particular, let’s begin by
starting to tease apart the different flavors of ML explainability.

Of particular importance in training is global explainability. We consider
an ML engineer to have access to global model explainability if across all
predictions they are able to attribute which features contributed the most to the
model’s decisions. The key term here is “all predictions,” unlike cohort or local
explainability—global is an average across all predictions.

In other words, global explainability lets the model owner determine to what
extent each feature contributes to how the model makes its predictions over all
of the data.

In practice, one area global explainability is used is on an ad hoc basis to provide
information to non-data science teams about what the model, on average, uses
to make decisions. Example: marketing teams, looking at a churn model, might
want to know what are the most important features to predict customer churn.

In this use case, the model provides global insights to stakeholders outside of
data science, and how often it is needed and for whom can vary—it’s more of an
analytical function to provide business stakeholders more insights.

There is also a model builder use case for global explainability, namely ensuring
a model is doing what you expect and hasn’t changed version to version. There
may be unforeseen ways your model can “learn” the function you set out to teach
it, and without the ability to understand what features it’s relying on it’s hard to
say which function it chose to approximate.

Explainability

Machine Learning Observability 101 | Page 20

M
od

el

Let’s take a model that
predicts the credit limit
that a new customer
should get for your bank’s
new credit card. There are
a number of ways that this
model can accomplish its
job of assigning a credit
limit to this new customer,
but not all are created
equal. Explainability tools
can help build confidence
that your model is learning
a function that isn’t over-
indexing on particular
features that may cause
problems in production.

For example, let’s say a
model is relying extremely
heavily on age to make its prediction of what credit limit to assign. While this
may be a strong predictor for ability to repay large credit bills, it may under-
predict credit for some younger customers who have an ability to support a
larger credit limit, or over-predict for some older customers who perhaps no
longer have the income to support a high credit limit.

Explainability tools can help you find potential issues like this before shipping
a model to production. Global explainability helps spot check how features in
the model are contributing to the overall predictions of the model. In this case,
global explainability would be able to highlight age as a primary feature that the
model is relying on, and allow the model owner to understand how this might
impact cohorts of their users and take action.

During training, global explainability is instrumental in gaining confidence in
the features you choose to provide your model for its predictions. Often, a model
builder will add a large number of features and observe a positive shift in a
key model performance metric. Understanding which features or interactions
between features drove this improvement can help you build a leaner, quicker,
and even a more generalizable model.

Explainability in Validation
Onto the next phase of the ML lifecycle: model validation. Let’s take a look at
how explainability can help model builders validate models before shipping
them to production.

Machine Learning Observability 101 | Page 21

M
od

el

To this end, it’s important to define our next class of model explainability: Cohort
Explainability. Sometimes you need to understand how a model is making its
decisions for a particular subset of your data, also known as a cohort. Cohort
explainability is the process of understanding to what degree your model’s
features contribute to its predictions over a subset of your data.

Cohort explainability can be incredibly useful for a model owner to help explain
why a model is not performing as well for a particular subset of its inputs. It can
help discover bias in your model and help you uncover places where you might
need to shore up your datasets.

Taking a step back, during validation, our primary objective is to see how our
model would hold up in a serving context. To be more specific, validation is
about probing how well your model has generalized from the data that it was
exposed to in training.

A key component in assessing
generalization performance
is uncovering subsets of your
data where your model may be
underperforming, or relying on
information that might be too
specific to the data that it was
trained on, also commonly known
as overfitting.

Cohort explainability can serve as a
helpful tool in this model validation
process by helping to explain
the differences in how a model
is predicting between a cohort
where the model is performing well
versus a cohort where the model is
performing poorly.

For example, let’s say that you have a model for predicting credit scores for a
particular user and you want to know how the model is making its prediction
for your users that are below the age of 30. It’s worth noting the most important
feature for this group, “charges,” is different from the global feature importance.
Cohort explainability can help investigate how your model is treating these
users in comparison to some other cohort of your data, such as users above
the age of 50. This can help you uncover somewhat unexpected or undesirable
relationships between input features and model outcome.

Machine Learning Observability 101 | Page 22

M
od

el

Another important benefit that cohort explainability buys you is the ability to
understand when to split your model into a collection of models and federate
their predictions. It’s very possible that the function you are trying to learn is
best handled by a federation of models, and cohort explainability can help you
discover the cohorts for which a different feature set or model architecture
might make more sense.

Explainability in Production
Lastly, let’s take a look at how explainability can help a model owner in the
production context. Once the model has left the research lab and has been
served into production, the needs of a model owner change a bit.

In production, model owners
need to be able to answer all-
of-the-above Cohort and Global
explainability, in addition to
questions about very specific
examples to help with customer
support, enable model auditability,
or even just provide feedback to
the user about what happened.

This leads us into our last class of
ML explainability: Individual, also
known as Local Explainability. This
is somewhat self explanatory, but
local explainability helps answer
the question, “for this particular
example, why did the model make
this particular decision?”

The level of specificity is an incredibly useful tool in the toolbox for an ML
engineer, but it’s important to note that having local explainability in your system
does not imply that you have access to global and cohort explainability.

Local explainability is indispensable for getting to the root cause of a particular
issue in production. Imagine you just saw that your model has rejected an
applicant for a loan and you need to know why this decision was made. Local
explainability would help you get to the bottom of which features were most
impactful in making this loan rejection.

Machine Learning Observability 101 | Page 23

M
od

el

Especially in regulated industries, such as lending in our previous example, local
explainability is paramount. Companies in regulated industries need to be able
to justify decisions made by their model and prove that the decision was not
made using features or derivatives of protected class information.

Note: In all our examples we used the absolute values of Shap for visualization;
these hide the directional information of the individual features.

The prediction-level shap
with directional information
can illustrate how the feature
influences an outcome—in
this case, “charges” decreases
the probability of default
where “age” increases.

As more and more regulation
impacts technology,
companies are not going to
be able to hide behind ML
black boxes to make decisions
in their products. If they would like to reap the benefits of machine learning, they
are going to have to invest in solutions that provide local explainability.

When the model is served and making predictions for your users, individual
inference level explainability can act as a fantastic entry point into understanding
the dynamics of your model. As soon as you see a model prediction that may
have gone awry, either from a bug report or monitoring thresholds that you set
up, this can start an investigation into why this happened.

It may lead you to discover which features contributed most to the decision, and
even cause you to dive deeper into a cohort that may also be affected by this
relationship you uncovered. This can help close the ML lifecycle loop, allowing
you to go from “I see a problem with an individual example” to “I have discovered
a way to improve my model.”

Common Methods In ML Explainability:
Now that we have defined some broad classes of ML explainability and how they
might be used in different stages of the ML Lifecycle, let’s turn our attention
toward a few techniques that are powering ML explainability solutions today.

Machine Learning Observability 101 | Page 24

M
od

el

SHAP – SHapley Additive exPlanations
To start, let’s take a look at SHAP which stands for SHapley Additive exPlanations.
SHAP is an explainability technique that developed from concepts in cooperative
game theory. SHAP attempts to explain why a particular example differs from
the global expectation from a model.

For each feature in your model, a Shapley
value is computed which explains how this
feature contributed to the difference between
the model’s prediction for this example as
compared to the “Average” or expected
model prediction.

The SHAP values of all the input features will always sum up to the difference
between the observed model output for this example and the baseline
(expected) model output, hence the additive part of the name in SHAP.

SHAP can also provide global explainability using the Shapley values computed
for each data point, and even allows you to condition over a particular cohort to
gain some insight on how feature contributions differ between cohorts.

Using SHAP in the model-agnostic context is simple enough for local
explainability, though global and cohort computations can be costly without
particular assumptions about your model.

LIME – Local Interpretable Model-Agnostic
LIME, or Local Interpretable Model-Agnostic Explanations, is an explainability
method that attempts to provide local ML explainability. At a high level, LIME
attempts to understand how perturbations in a model’s inputs affect the end-
prediction of the model. Since it makes no assumptions about how the model
reaches the prediction, it can be used with any model architecture, hence the
“model-agnostic” part of LIME.

http://bjlkeng.github.io

Machine Learning Observability 101 | Page 25

M
od

el

LIME attempts to understand this relationship between a particular example’s
features and the model’s prediction by training a more explainable model such as
a linear model with examples derived from small changes to the original input.

At the end of training, the explanation can be found from the features for
which the linear model learned coefficients above particular thresholds (after
accounting for some normalization). The intuition behind this is that the linear
model found these features to be most important in explaining the model’s
prediction, and therefore for this local example you can reason about the
contributions that each feature made in explaining the prediction that your
model made.

Implications
One of the most common critiques of modern machine learning is the absence
of explainability tools to build confidence in, provide auditibability for, and enable
continuous improvement of machine learned models. Today, there is a keen
interest in surmounting this next hurdle. As evidenced by some of the modern
explainability techniques covered, we are well on our way.

Machine Learning Observability 101 | Page 26

D
at

a

In practice today, a model is often only as good as the data it is trained on. Data
quality doesn’t stop being important after the model is trained, but continues
to remain important as the model is deployed in production. The quality of
the model’s predictions is highly dependent on the quality of the data sources
powering the model’s features.

What Do We Mean by Data Quality?
Data quality is a broad term and can cover a wide variety of issues in your data.
For the purposes of this section, data quality refers to hard failures in data
pipelines. Other important issues around data quality—such as “slow bleed”
failures or gradual drift in your data over time—will be covered in a subsequent
section titled “What Can Go Wrong: Model Failure Modes.”

To dig deeper, it’s necessary to define and break out categorical data streams
versus numerical data streams.

Categorical Data
Categorical data is just what it sounds like: a stream of categories, like the type of
pet someone owns (dog, cat, bird, pig, etc.).

Cardinality Shifts
To start, something that can go wrong with a categorical data stream is a sudden
shift in the distribution of categories. To take it to an extreme, let’s say your
hypothetical model predicting which pet food to buy for your pet supply store
starts seeing data saying that people only own cats now. This might cause your
model to only purchase cat food, and all your potential customers with dogs will
have to go to the pet supply store down the street instead.

Data Quality

Data Type Mismatch
In addition to a sudden cardinality
shift in your categorical data, your
data stream might start returning
values that are not valid to the
category. This is, quite simply, a
bug in your data stream, and a
violation of the contract you have
set up between the data and
the model. This could happen
for a variety of reasons: your data
source being unreliable, your data

Machine Learning Observability 101 | Page 27

D
at

a

processing code going awry, some downstream schema change, etc. At this
point, whatever comes out of your model is undefined behavior, and you need
to make sure to protect yourself against type mismatches like this in categorical
data streams.

Missing Data
One incredibly common scenario that practitioners run into is the problem of
missing data. With the rising number of data streams used to compute large
feature vectors for modern ML models, the likelihood that some of these values
will be nil is higher than ever. So what can you do about it?

One thing you certainly can do is throw your hands up in the air and discard the
row in a training context, or throw an error in your application in a production
context. While this will help you avoid this problem, it’s possibly not the most
practical. If you have hundreds, thousands, or tens of thousands of data streams
used to compute one feature vector for your model, the chance that one of these
streams is missing can be very high!

This brings us next to how you might fill this missing value, commonly referred
to as imputation. For categorical data, you could choose the most common
category that you have historically seen in your data, or you could use the values
that are present to predict what this missing value likely is.

Numerical Data
A numerical data stream is also pretty self-explanatory. Numerical data is data
that is represented by numbers, such as the amount of money in your bank
account, or the temperature outside in Fahrenheit or Celsius.

Out of Range Violations
To start things off, something that can go wrong with numerical data streams
is out of range violations. For example, if age was an input to the model and you
are expecting the age to be between 0–120, but suddenly receive a value in the
300s, this would be considered out of range.

Type Mismatch
Type mismatch can also affect numerical data. It’s in the realm of possibility that
for a particular data stream where you are expecting a temperature reading
that you are returned a categorical data point, and you have to handle this
appropriately. It’s possible that the default behavior may be to cast this categorical
value to a number that, although now valid, has entirely lost its semantic meaning
and is now an error in your data that is incredibly hard to track down.

Machine Learning Observability 101 | Page 28

D
at

a

Missing Data
For numerical data, you have a few more options for imputations, such as taking
the average, median, or some other distribution metric for this particular value.
The complexity of your solution to this problem is entirely up to your application
scenario, but it’s important to know that no solution is perfect here.

Challenges with
Monitoring Data Quality
Today
Now that we have
gotten a better idea
of what possible data
quality issues you may
run into, let’s now
briefly dive into some
common challenges that
practitioners run into
when attempting to keep
tabs on the quality of
their data.

Before we start here, it’s
important to note that this is different from the broad product space of data
observability. Data observability tools are mostly focused on monitoring the
quality of tables and data warehouses, while ML Observability is focused on
monitoring the inputs and outputs of models. These models are consistency
evolving, features are being added and changed, and so the data quality
monitoring of models must be able to evolve with the schema of the model.

Too Much Data to Keep Tabs on
It’s not surprising to many current ML practitioners that many models these
days rely on tons of features to perform their tasks. One rule of thumb, guided
by recent advances in statistical learning theory, suggests that a model can
effectively learn approximately a feature for every 100 examples you have in a
training set. With training set sizes exploding into the hundreds of millions and
even billions, models with feature vector lengths in the tens and hundreds of
thousands are not uncommon.

This leads us to a major challenge that practitioners face today. To support these
incredibly large feature vectors, teams have poured larger and larger data streams
into feature generation. Writing code to monitor the quality of each of these data
streams is fundamentally untenable, and the reality is that this data schema will
inevitably change often as the team experiments to improve the model.

Machine Learning Observability 101 | Page 29

D
at

a

At the end of the day, no one wants to sit there and hand configure thresholds,
baselines and set up a custom data monitoring system for each of these data
streams that are feeding into the model. It’s common to add a feature, drop
a feature, change how it is computed, and adding more work into the ML
development loop will only slow you and your team down.

What now?
Now that we understand some of the current challenges around monitoring
and fixing data quality issues, what can we do about it? To start, teams need to
start keeping track of how the quality of their data affects the end performance
of their model.

Leverage Historical Information
Ultimately the model’s performance is what we care about, and it’s very
possible that the quality of some data is worth more than that of others. To
avoid manually creating baselines and thresholds for each data stream, teams
need to have a history of data to look at either from training sets or from
historical production data.

Once these historical
distributions have been
determined, your monitoring
system can have a better idea
about what it should consider
an outlier in a numerical
stream, and generate alerts
when a categorical stream
has strongly deviated from its
historical distribution. From
these distributions, intelligent
baselines and thresholds can be
created to balance how “noisy”
or likely to fire these alerts are,
giving power to the model team
to balance risk vs reward.

On top of setting up automatic alerting systems for all of your data streams,
your data quality monitoring system should also allow you to enforce type
checks to protect against downstream errors in your model and avoid potential
typecasting issues.

Machine Learning Observability 101 | Page 30

D
at

a

Hill Climb using Model Performance
Lastly, by keeping track of your model’s end performance, your monitoring
system should also allow you to test out different imputation methods for your
data and give you the performance impact for this new imputation strategy. This
provides confidence that the choices you are making are positively impacting
the end performance of the model.

As fast as machine learning has progressed and made its way into some
of our most crucial products and services, the tooling to support these
experiences has lagged behind. These core features of a modern data quality
monitoring system bring back control to the ML engineer and remove a large
amount of guesswork, which unfortunately has crept very deeply in the art of
productionizing machine learning.

Machine Learning Observability 101 | Page 31

D
at

a

As an ML practitioner, you probably have heard of drift. In this piece, we will dive
into what drift is, why it’s important to keep track of, and how to troubleshoot
and resolve the underlying issue when drift occurs.

Model and Feature Drift2

What Is Drift?
First things first, what is drift? Drift is a change in distribution over time. It can be
measured for model inputs, outputs, and actuals. Drift can occur because your
models have grown stale, bad data is flowing into your model, or even because of
adversarial inputs.

Now that we know what drift is, how can we keep track of it? Essentially, tracking
drift in your models amounts to keeping tabs on what had changed between
your reference distribution, like when you were training your model, and your
current distribution (production).

Models are not static. They
are highly dependent on
the data they are trained
on. Especially in hyper-
growth businesses where
data is constantly evolving,
accounting for drift is
important to ensure your
models stay relevant.

Change in the input
to the model is almost
inevitable, and your model
can’t always handle this
change gracefully. Some
models are resilient to
minor changes in input
distributions; however, as these distributions stray far from what the model
saw in training, performance on the task at hand will suffer. This kind of drift is
known as feature drift or data drift.

It would be amazing if the only things that could change were the inputs to
your model, but unfortunately, that’s not the case. Assuming your model is
deterministic, and nothing in your feature pipelines has changed, it should give
the same results if it sees the same inputs.

2 NOTE: this section is adapted from a previous article written in collaboration with Hua Ai,
 Data Science Manager at Delta Air Lines.

https://www.linkedin.com/in/hua-ai-baaa335/

Machine Learning Observability 101 | Page 32

D
at

a

While this is reassuring, what would happen if the distribution of the correct
answers, the actuals, change? Even if your model is making the same predictions
as yesterday, it can make mistakes today! This drift in actuals can cause a
regression in your model’s performance and is commonly referred to as concept
drift or model drift.

How Do I Measure Drift?
As we talked about previously, we measure drift by comparing the distributions
of the inputs, outputs, and actuals between training and production.

But how do you actually quantify the distance between these distributions? For
that, we have distribution distance measures. To name a few, we have

1. Population Stability Index (PSI)
2. Kullback — Leibler divergence (KL divergence)
3. Wasserstein’s Distance

While each of these distribution distance measures differs in how they compute
distance, they fundamentally provide a way to quantify how different two
statistical distributions are.

This is useful because you can’t build a drift monitoring system by looking at
squiggles on charts. It would be best if you had an objective, quantifiable ways
of measuring how the distribution of your inputs, outputs, and actuals are
changing over time.

PSI Calc

Machine Learning Observability 101 | Page 33

D
at

a

For example, in the above figure, we see a comparison in the distributions
of how I spent my money this last year as compared to the year prior.
The Y-axis represents the percentage of the total money I spent in each
category, as denoted on the x-axis. To see if my allocation of money has
changed significantly over the last year, we can calculate the population
stability index (PSI) between these two distributions.

For each category in the budget, we calculate the difference in percentage
between the reference distribution A (my budget last year) and the actual
distribution B (my budget this year) and multiply this by the natural log of
(A %/ B%). For each of these categories, take the sum of this value, which
gives us our PSI.

For example, in the above figure, we see a comparison in the distributions
of how I spent my money this last year as compared to the year prior.
The Y-axis represents the percentage of the total money I spent in each
category, as denoted on the x-axis. To see if my allocation of money has
changed significantly over the last year, we can calculate the population
stability index (PSI) between these two distributions.

For each category in the budget, we calculate the difference in percentage
between the reference distribution A (my budget last year) and the
actual distribution B (my budget this year) and multiply this
by the natural log of (A %/ B%). For each of these categories,
take the sum of this value, which gives us our PSI.

The larger the PSI, the less similar your distributions are,
which allows you to set up thresholding alerts on the
drift in your distributions.

Regardless of the distribution distance metric you are
using, it’s important to not just measure the drift in your
distributions but also to measure how these distance
metrics relate to important business KPIs and metrics. By
doing so, you can start to understand how the drift can actually
impact your customers and help you understand what drift thresholds
trigger alerts to your team.

Machine Learning Observability 101 | Page 34

D
at

a

Can I Retrain My Model?
What should we do when we notice a trained model has drifted? A first
thought could be, “let’s retrain it”! While retraining is usually necessary, how to
retrain requires some more thoughts. Simply adding the most recent data into
your training set and redeploying the same model architecture may not solve
the problem.

To start, you have to be careful about how you sample this newer data and
represent it in your model. If you add too much new data and cause an
overrepresentation in your training set, you risk overfitting this newer data. By
doing so, your model might not generalize well in the future, and it may impact
its performance on inputs that it previously had no trouble with.

On the other hand, if you only add a few examples, your model likely won’t
change much at all, and your model might still make the mistakes that you set
out to resolve.

You can adjust this tradeoff by weighting the examples in your loss function
to strike the right balance between these two competing forces. One way you
might measure how to balance this tradeoff is by measuring your performance
on one globally sampled hold-out set to approximate your generalization
performance and on another hold-out set sampled just from the population of
the newer data. If you are performing really well on the global hold outset but
not the newer data, you can try upping the weight you assign to the new data in
your training set and vice-versa.

While, in many cases, retraining your model is the right solution, some changes
are so fundamental that a simple retrain won’t solve anything. If you cannot
achieve an acceptable validation performance on your retrained model, it may
be time to go back to the drawing board. If something in your business has
fundamentally changed, your models may need to as well.

Machine Learning Observability 101 | Page 35

D
at

a

It all starts with an alert — an email or a notification that something is off. Usually,
it is a good practice to keep track of the change in performance and changes
in the input data since those changes may provide answers to the change in
performance. It is also important to understand where drift has happened on a
specific slice of data or certain dates. That will help to diagnose the model and to
come up with solutions.

A systematic evaluation is needed when a significant drift alert has been
triggered for a period of time. It’s usually an art instead of science to decide how
significant a drift becomes concerning since it depends on how the predictions
are being used and the business value of the prediction. But here are some steps
to get you started in resolving drift.

1. Repull Training Data
Identify what input features or outcome variables have drifted and understand
how their distributions have changed. Carefully consider what time period
should be included in the retraining. Resampling or weighting observations can
be used to reconstruct a more balanced training data set.

How to Troubleshoot Drift

Machine Learning Observability 101 | Page 36

D
at

a

2. Feature Engineering
Sometimes we’ll notice some features have drifted significantly but have not
caused model performance issues. That is not something to be overlooked since
that indicates the relationship between those features and the outcome variable.
Re-construct and select features to adapt to the new dynamics in this data set.

It is also a good time to connect with the end-users of the model to understand
if their business processes have changed. New features are often needed to
capture the change.

3. Model Structure
Sometimes, the model structure should be revisited as well. For example, if only
a slice of predictions has been impacted, a hierarchical model can be helpful to
address this without changing the entire model.

How To Get Ahead of This?
Of course, doing all of these amidst a fire drill or crisis amplifies an already
stressful situation. Imagine: you get a call from your business partners asking you
to explain why the model significantly underperforms in one day since they need
to explain an undesirable business outcome to their stakeholders. It is never easy
to explain a model’s performance on a set of specific data points, especially in
pressured situations. It can also cause people to make nearsighted decisions and
over-adjust the model to catch the most recent trend.

A good practice is to set up a cadence to review model performance periodically
instead of relying entirely on alarms to indicate when things have gone wrong.
Regular reviews help to keep track of changing business dynamics and of
thinking about model adjustments proactively. Also, it is important to set up a
regular channel to communicate with end-users, hear about their feedback on
the model, or learn about upcoming process changes. At the end of the day,
the models are there to support the end-users. Therefore, user perceptions are
equally important as model performance metrics.

Machine Learning Observability 101 | Page 37

Se
rv

ic
e

ML Service Health & Reliability3

One particular challenge that ML practitioners face when deploying models
into production environments is ensuring a reliable experience for their users.
Just imagine, it’s 3 am and you awake to a frantic phone call. You hop into a
meeting and the CTO is on the line, asking questions. The number of purchases
has suddenly plummeted in the newly launched market, resulting in a massive
loss of revenue every minute. Social media has suddenly filled with an explosion
of unsavory user reports. The clock is ticking. Your team is scrambling, but it’s
unclear where to even start. Did a model start to fail in production? As the
industry attempts to turn machine learning into an engineering practice, we
need to start talking about solving this ML reliability problem.

An important part of engineering is ensuring reliability in our products, and
those that incorporate machine learning should be no exception. At the end of
the day, your users aren’t going to give you a pass because you are using the
latest and greatest machine learning models in your product. They are simply
going to expect things to work.

To frame our discussion about reliability in ML, let’s first take a look at what the
field of software engineering has learned about shipping reliable software.

Reliability in Software
The Why
Virtually any modern technological enterprise needs a robust Reliability
Engineering program. The scope and shape of such a program will depend on
the nature of the business, and the choices will involve the trade-offs around
complexity, velocity, cost, etc.

A particularly important trade-off is between velocity (“moving fast”) and
reliability (“not breaking things”). Some domains, such as fraud detection,
require both.

Adding ML into the mix makes things even more interesting.

Consider setting the goal of 99.95% availability. This gives us an outage budget
of 5 minutes per week. The vast majority of outages (well over 90% in our
experience) are triggered by human-introduced changes to code and/or
configuration. This now also increasingly includes changes to production ML
models and data pipelines.

3 This section is adapted from an earlier piece written in collaboration with Bob Nugman, ML Engineer at Doordash.

Machine Learning Observability 101 | Page 38

Se
rv

ic
e

It is common to have changes to production systems’ code and
configuration to occur nearly continuously, with each change having the
potential for creating an outage-inducing incident. Similarly, with increased
reliance on ML, there’s an increasing appetite for high-velocity production
delivery of ML systems, again with a risk of making a change that introduces
a regression or an outage.

Allowing ourselves just one incident per week, the challenge then becomes
to detect and fully mitigate an incident within five minutes, if we are to
meet this goal. How?

There needs to be a systematic Reliability Program.

The Three Pillars of Reliability
A successful reliability program will have the following elements. Each will be
covered in more detail below.

• Observability: Capability to
detect, explore, and make
sense of the regressions.

• Management of Change:
Tooling and practices
to ensure that every
change introduced (code,
configuration, business
rules, infrastructure, etc) is
discoverable, observable,
rolled out gradually,
mitigable, revertible.

• Incident Response:
When (not if) an incident occurs, a pre-existing plan and capability is
in place, to first mitigate and then revert the impact of the incident.
The process of incident response includes the initiation of the post-
incident phase, including blameless post mortems, the findings of which
feedback into improvement of all of the three pillars.

These three pillars exert pressure on the entire engineering process,
technological stack, as well as the organization’s culture.

Let us explore the goals and some of the properties of each.

Machine Learning Observability 101 | Page 39

Se
rv

ic
e

Observability
A successful observability solution will enable us to:
• Detect a regression quickly;
• Inform a path to rapid and efficient mitigation; and
• Once the issue has been mitigated, inform the causes of the issue, so that the

problem can be fully analyzed, understood, and addressed, usually through
the post mortem process.

To be efficient, observability tools and practices need to be standardized
across the org, while enabling the flexibility to meet the needs of every team.
An observability team should formulate best practices and implement tools
to enable developers to meet their observability needs, consistently and with
minimum effort.

Management of Change
As noted above, most outages are triggered by one of the many changes to code
and configuration. The goal of a Management of Change system is to ensure the
changes are introduced in a centralized, systematic fashion which supports our
reliability goals.

Similar to Observability, management of change (code, configuration, infra,
ML models, etc) should be standardized across the org, while accommodating
varying needs between teams. This is best achieved with a dedicated owner(s)
for the management of change tooling and practices.

For additional reference, here is an example of well-constructed management-
of-change capability.

Incident Response
Despite our best preparation, truly unimaginable things will happen. At that
time, a response should not look like an engineering activity with brainstorming,
problem-solving, etc. It should look like an incident response, with a predefined
structure, rehearsed roles, sharp specialized tools, and a mandate to operate.

Importantly, the other two pillars, Observability and Management of Change, are
crucial for mounting a successful Incident Response capability.

Reliability in Machine Learning
Now that we have taken a look into what reliability means in the broad world of
software engineering, let’s take our learnings to understand what problems the
field of ML Ops needs to solve to help companies deploy reliable applications
with machine-learned components.

https://www.usenix.org/conference/srecon17americas/program/presentation/yates

Machine Learning Observability 101 | Page 40

Se
rv

ic
e

To do so, let’s turn back our story about the late-night call from your CTO that we
discussed a bit earlier. To give some more context, let’s say that the model that
ranks your search results for your e-commerce company is returning strange
results and is severely impacting customer conversions. Let’s take what happens
here step by step.

The first step in the response to the problem has happened even before you
got invited to the call with your CTO. The problem has been discovered and
the relevant people have been alerted. This is likely the result of a metric
monitoring system that is responsible for ensuring important business metrics
don’t go off track.

Next, using your ML observability tooling, you are able to determine that the
problem is happening in your search model since the proportion of users who
are engaging with your top n-links returned has dropped significantly.

After learning this you rely on your model management system to either roll
back to your previous search ranking model or deploy a naive model that can
hold you over in the interim. This mitigation is what stops your company from
losing (as much) money every minute since every second counts for users being
served incorrect products.

Now that things are somewhat working again, you need to look back to your
model observability tools to understand what happened with your model. There
are a number of things that could have gone wrong here, some of which could
inform your mitigation strategy, so it’s important to quickly start understanding
what went wrong.

Lastly, once you have discovered the root cause of the issue, you have to come up
with a solution to it, ranging from fixing a data source, retraining your model, to
going back to the drawing board to devise a new model architecture.

Here is a deeper dive into each of these pieces that enable ML reliability in
production products.

Observability
The key ingredient in making any system reliable is the ability to introspect the
inner workings of the system. In the same way that a mechanic needs to peer
under the hood of a car to see if your engine is running smoothly, an ML engineer
needs to be able to peer under the hood of their model to understand how their
model is fairing in production. While this seems obvious, many companies have
been flying blind when it comes to deploying machine learning. Measuring your
model’s performance via aggregate performance metrics is not observability.

Machine Learning Observability 101 | Page 41

Se
rv

ic
e

The best way to think about ML observability is how effectively your team can
detect a problem with your model’s performance, perform mitigation to the
problem to stop the bleeding, identify the root cause of the regression, and
perform remediation or solution to the problem. It’s important to note that having
the ability to detect a problem does not constitute full observability into an ML
system. Without the ability to introspect to find the root cause or weight the sum
of contributing factors, any resolution is going to be some form of guesswork.

To better illustrate what kind of things your tooling should be looking for, we first
need to understand what are some things that can go wrong?

So what can go wrong?

What you should observe really depends on what can go wrong.

There are many different model failure modes and production challenges when
working with ML models, each of which requires you to observe additional
information in your system.

To start, the first step in the battle is detecting that an issue has occurred. How
this is typically done is to measure a model performance metric such as running
accuracy, RMSE, f1, etc. One catch is that this isn’t as easy as it sounds. In the
ideal case, you know the ground truth of your model’s prediction pretty quickly
after the model has made the decision, making it easy to determine how well
your model is doing in production. Take, for example, predicting which ad a user
might click on. You have a result around how well you did almost immediately
after the model makes the decision. The user either clicked on it or they didn’t!

Many applications of ML don’t have this luxury of real-time ground truth, in
which case proxy performance metrics such as relevant business metrics might
be used instead. On top of model performance metrics, you may want to monitor
service health metrics such as prediction latency, to ensure your service is
providing a good experience for your users.

Once a regression has been detected by monitoring model performance or
service health metrics, you need more information to understand what might
be going on with your model. Some things that are important to keep tabs on to
help with incident response:

https://arize.com/what-is-ml-observability/
https://arize.com/ml-model-failure-modes/

Machine Learning Observability 101 | Page 42

Se
rv

ic
e

Service:

• Latency of model predictions and user-facing latency
• Service downtime (pretty similar to software)

Data:

• New values in production unseen before in training
• Noisy or missing values in the data can have a big impact on the features

consumed by a model.

Model:

• The underlying task that the model is performing can drift slowly or quickly
change overnight!

• Your model may be biased in a way that was not designed (are some
unexpected subsets of your users getting measurably different outcomes)

• Your model may be performing particularly poorly on some subsets of data
(need to store and make sense of your model errors)

For each of these potential production challenges, your ML Observability toolset
should enable your team to detect regressions and drill into them to best
understand why they happened and what you can do about it.

Next, here are some tips on how to best manage shipping updates to your model
in production.

Management of Change
Every time you push new changes into production, you risk introducing your
users to issues that your team did not foresee and protect against.

In fact, let’s say for the sake of it that your search model is regressing on your
hypothetical e-commerce platform due to a new model rollout. Now that
your business metrics caught that something was going wrong, and your
observability tooling pinpointed the search model, what do we do about it? We
alluded previously to the difference between mitigation and remediation. Here,
since we are rapidly losing the company money, it’s likely that the best course of
action is to stop the bleeding as quickly as possible (mitigate the issue).

One option we may have is to revert back to the previous model we had
deployed. Alternatively, we could ship our naive model, a model that may not
have as good of performance but works consistently pretty well. In our case, this
might just be displaying the exact results returned from elastic search.

Machine Learning Observability 101 | Page 43

Se
rv

ic
e

To best protect against these potential issues from occurring rapidly and
dramatically for the users of your product, ML systems should follow similar
rollout procedures to those of software deployments.

In the same way that software is typically tested using static test cases to
ensure that the code is not regressing any behavior, ML systems should also
undergo static validation tests before deployment. For example, if you are
shipping an autonomous driving service, running your new model through some
standardized deterministic simulator routes might allow you to catch some
obvious regressions.

While static validation is exceedingly important for improving the quality of
your shipping product, there is no replacement for what you learn about a
model in production. Let’s talk about how you can get these learnings from your
production model without risking a full outage or a degraded experience for all
of your users.

You may want to ship your model to a subset of your users first to detect issues
early and before all of your users catch a whiff of the issue. This technique is
commonly referred to as a canary deployment.

As you gradually roll out your changes if a problem is detected via your ML
monitoring systems, you should be able to easily and quickly revert back to a
previous model version along with its corresponding software version.

Another topic that is closely related is the idea of shadow deployment. In a
shadow deployment, you would start to feed the inputs that your existing model
is seeing in production to your new model before you ship it. So while your
users are still experiencing the predictions and user experience provided by the
existing model, you can start to measure how your new model is performing and
make any necessary changes to get it ready for prime-time.

One additional benefit of a shadow deployment is that you can perform
experiments with multiple candidate models in a shadow deployment and
choose the one that is able to perform best on your current production data.
Now that we have some techniques to help us improve the quality of our
deployments, let’s talk about what you can do when you find an issue with your
production model after you have deployed it into production.

Incident Response
Okay so we discovered an issue with our model in production, what should we
do about it? This very much depends on your model application, but here we
will talk about some general strategies about how to handle an issue in the short
term (mitigation) and work towards the real fix (remediation).

Machine Learning Observability 101 | Page 44

Se
rv

ic
e

Mitigation
To start, just as with software, you may be able to roll back to a previous model
version and corresponding software/configuration. This mitigation strategy
might help you if you promoted a bad model that got past your validation
procedures; however, this will not always solve your issue. It’s possible that your
input data distribution or the underlying task of the model has changed, making
the older model also a poor choice to have in production.

Another strategy that can work in some cases is to deploy a naive version of your
model. This may generally have lower performance than your more complex
model, but it may do better in the face of change in input and expected output
distributions. The model doesn’t need to be machine-learned and can just be
a simple heuristic-based model. This strategy may help you buy time while you
rework your more complex, but more performant model.

Remediation
This brings us to the most common advice that is given to resolve an incident
caused by an ML model in production: Just retrain it! This advice is common
because it covers a lot of potential failure modes for a model. If the input data
has shifted or the underlying task has changed, retraining on newer production
data might be able to solve your issue. The world changes over time, and it’s
possible your model needs to be regularly retrained to stay relevant.

Retraining strategies could encompass a whole other technical article, so let’s skip
to the abridged version. You have some options when you retrain your model:

You can choose to upsample certain subsets of your data, potentially to fix issues
regarding unintended bias or underperformance for a category of your data.

You also can sample the newer production data to build new training sets to
use if you think that the shift in your input/output distributions is here to stay.

If you think that this shift in distributions is temporary and potentially seasonal,
you can train a new version of your model on the data from this seasonal period
and deploy it, or turn to engineering features to help your model understand this
seasonal indicator in the function it is trying to approximate.

It’s possible that your model’s performance may have dipped due to the
introduction of a new category of examples that it had not seen in it’s training. If
this category of examples is sufficiently different you may need an entirely new
model to handle these particular examples. The process of training a separate
model and employing a higher-level model to determine which to use for a
particular example is commonly referred to as a federation.

Machine Learning Observability 101 | Page 45

Se
rv

ic
e

The last option is going back to the drawing board. If retraining hasn’t helped
restore performance and your older models also fail to do the job, it’s possible
that the task has changed significantly enough to require some of the following:
a new model architecture, new features, and new data processing steps.

It took years for the software world to get behind the reliability framework
outlined above. With the three pillars of observability, management of change,
and incidence response, teams can translate the reliability gains from the world
of software to the world of ML applications. It’s now up to the ML Ops space to
provide the tools that we desperately need to make ML applications reliable.

Machine Learning Observability 101 | Page 46

Se
rv

ic
e

ML SERVICE-LEVEL PERFORMANCE MONITORING
 This section covers the often overlooked field of service-level ML performance in
additional detail by breaking down how it can be measured and improved.

Let’s start off by breaking down what we mean by service-level performance of
an ML system. In essence, there really are two important measurements that we
are going to talk about: service performance and model performance.

Service performance is the time it takes to load the model into memory, gather
the requisite data, and compute the features the model needs to make its
prediction. Service performance also includes the time it takes for the user to be
made aware of the decision that the model has made.

Model performance is the time it takes for your model to make its prediction
once it is fed its input.

In a real-time system, both of these metrics contribute to the user-perceived
latencies of your application, which can be the difference between a customer
choosing to use your product or service over another. As a result, it’s important
not just to monitor these service-level performance metrics, but also make real
progress in reducing these latencies in your application.

Let’s start by taking a look at what you might want to monitor and improve upon
to hone in on making your service more performant.

Machine Learning Observability 101 | Page 47

Se
rv

ic
e

Optimizing Performance of the Service
Input Feature Lookup
Before the model can even make a prediction, all of the input features must
be gathered or computed by the service layer of the ML system. Some of the
features will be passed in by the caller, while other features might be collected
from a datastore or calculated in real-time.

For example, a model predicting the likelihood of a customer responding to
an ad might take in the historical purchase information of this customer. The
customer wouldn’t provide this when they view the page themselves, but the
model service would query a data warehouse to fetch this information. Gathering
input features can generally be classified into two groups:

1. Static Features: Features that are less likely to change quickly and can be
stored or calculated ahead of time. For example, a customer’s historical
purchase patterns or preferences can be calculated ahead of time.

2. Real-Time Calculated Features: Features that require being calculated over
a dynamic time window. For example, when predicting ETAs (estimated time
of arrival) for food delivery, you might need to know how many other orders
have been made in the last hour.

In practice, a model typically uses a mix of static and real-time calculated
features. Monitoring the lookup and transformations needed for each feature
is important to trace where the latency is coming from in the ML system. It’s
important to remember that your service level performance in the input feature
lookup stage is only as good as your slowest feature.

Pre-Computing Predictions
In some use cases, it is possible to reduce prediction latency by precomputing
predictions, storing them, and serving them using a low-latency read datastore.
For example, a streaming service might compute and store ahead of time the
recommendations for a new user of their service.

This type of offline batch-scoring job can vastly reduce latencies in the serving
environment because the brunt of the work has been done before the model
has even been called.

For example, recommendation systems used by a streaming service like Netflix
can pre-compute the movies or TV shows that you are likely to enjoy when you
are not using the service so that the next time you login you are quickly greeted
with some personalized content without the long loading screen.

Machine Learning Observability 101 | Page 48

Se
rv

ic
e

Optimizing Performance of the Model
Reduce Complexity
Now that we have looked at service performance, let’s turn our attention to how
you might monitor and improve your model performance.

One approach to optimize model prediction latency is to reduce the complexity
of the model. Some examples of reducing complexity could be reducing the
number of layers in a neural network, reducing levels in decision trees, or
pruning any irrelevant or unused part of a model.

In some cases, this might be a direct tradeoff to the model efficacy. For example,
if there are more levels in a decision tree, there are more complex relationships
that can be captured from the data and therefore increase the overall
effectiveness of the model. However, fewer levels in a decision tree can reduce
prediction latency.

Balancing the efficacy of the model (accuracy, precision, AUC, etc.) with its
required operational constraints is important to strive for any model to be
deployed. This becomes especially relevant for models that are embedded on
more constrained mobile devices.

Parallelize
Aside from reducing the
complexity of the model,
something you can do
to improve your model
performance in production
is to re-architect your model
to be more parallelizable. If
a part of your model doesn’t
depend on the output of
another part of your model,
why not run both of these
sections at the same time.

The cloud-ML industry is
moving to highly scalable on-demand clouds that allow you to leverage football
fields of specialized computers to run your model on. In a similar vein, mobile
processors are dedicating significant portions of their chips to machine learning
accelerators, which allow developers to exploit the parallel nature of their model
inference pipelines.

Machine Learning Observability 101 | Page 49

Se
rv

ic
e

If you have the ability to throw more cores at the problem at prediction time, you
can leverage a parallel nature of your model to speed up your prediction time.
You may be leaving performance on the table if you don’t look into how your
model can be reimagined in a more parallel way.

Takeaway

While traditional ML performance monitoring is of the utmost importance
for measuring and improving your application of machine learning, it doesn’t
capture the full picture of how a user is experiencing your application. Service
level performance metrics matter, and a change that increases your accuracy by
one percent that causes a 500 millisecond regression might not be worth it for
your use case!

If you don’t see the trade-offs you are making with every change you make
to your system, you are going to slowly bury your model in a pile of small
performance regressions that add up to a slow, unwieldy product. Have no fear:
there are a number of techniques to diagnose performance issues and ultimately
improve your model’s service-level performance, but first you have to start
paying attention to the milliseconds.

To learn more about Arize AI’s leading observability platform and
use-cases specific to your industry, Request a Demo.

For the latest on ML observability best practices and tips, Sign up
for our monthly newsletter The Drift.

Conclusion
While this ebook contains a wealth of best practices and resources, ultimately
it’s teams that put these insights into practice. Hopefully by collaborating
through a common platform, everyone who touches machine learning—from
the data scientists who build models to the ML engineers who deploy them
and even the executives overseeing efforts and ROI—can begin to develop a
common culture and strategy around observability that moves beyond mere
monitoring or compliance.

https://arize.com/request-a-demo/
https://arize.com/blog/#blog-subscribe-modal
http://www.arize.com
https://twitter.com/arizeai
https://medium.com/arize-ai

