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1Introduction 
AI is everywhere. With global business spending on artificial intelligence (AI) 
and machine learning (ML) forecast to eclipse $200 billion by 2025, enterprises 
are urgently deploying models across nearly every facet of their businesses. 
Arize AI—a pioneer and early leader in ML observability—tracks billions of ML 
model predictions daily that influence everything from how crops are harvested 
to a customer’s experience in a fast-food drive-through, including whether the 
credit card transaction gets approved. 

Given the high stakes for both companies 
and society at large, it’s more important 
than ever to have software that helps 
humans understand AI—and know how 
to fix it when it breaks. That is why Arize AI 
exists: to help teams troubleshoot the most 
complex systems ever built and provide 
guardrails when those systems make high-
stakes decisions. 

ML observability is how that mission is 
accomplished and the topic of this ebook. 
While ML monitoring alerts you when the 
performance of your model is degrading, 
ML observability helps you get to the 
bottom of why—a bigger, harder problem.

With ML observability, companies gain 
insight into model and feature drift 
detection, input and output data quality, 
model performance, and explainability. 
When problems arise, ML observability 
gives practitioners the ability to pinpoint 
why a model’s performance is not as 
expected in production as well as clear 
signals for when they should retrain their 
model, update their training datasets, add 
new features to their model, or even go 
back to the drawing board.

https://www.wsj.com/articles/world-wide-ai-spending-expected-to-double-in-next-four-years-11598520600


Machine Learning Observability 101  |  Page 2

O
b

se
rv

ab
ili

ty
 10

1What is ML Observability? 
ML Observability is the practice of obtaining a deep understanding of a model’s 
performance across all stages of the model development cycle: as it’s being built, 
once it’s been deployed, and long into its life in production.

In practice, ML observability is often the key difference between a team that flies 
blind after deploying a model and a team that can iterate and improve on their 
models quickly. 

Is Model Observability just a fancy word for ML monitoring?

Model observability begins with the process of collecting model evaluations 
in environments such as training, validation, and production, then tying them 
together with analytics that allows one to connect these points to solve ML 
engineering problems. These inferences are stored in a model evaluation store 
(credit to Josh Tobin for this term), which hosts the raw inference data.  
An evaluation store holds the response of the model, a signature of the model 
decisions, to every piece of input data for every model version, in  
every environment.

An ML observability platform allows teams to analyze model degradation and 
to root cause any issues that arise. This ability to diagnose the root cause of a 
model’s issues, by connecting points across validation and production, is what 
differentiates model observability from traditional model monitoring. While 
model monitoring consists of setting up alerts on key model performance 
metrics such as accuracy, or drift, model observability implies a higher objective 
of getting to the bottom of any regressions in performance or anomalous 
behavior. We are interested in the why. Monitoring is interested in only 
aggregates and alerts. Observability is interested in what we can infer from the 
model’s predictions, explainability insights, the production feature data, and 
the training data, to understand the cause behind model actions and build 
workflows to improve.
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ML Observability backed by an Evaluation Store:

• Move seamlessly between production, training, and validation dataset 
environments

• Natively support model evaluation analysis by environment
• Designed to analyze performance Facets/Slices of predictions
• Explainability attribution designed for troubleshooting and regulatory analysis
• Performance analysis with ground truth—Accuracy, F1, MAE
• Proxy performance without ground truth—prediction drift
• Distribution drift analysis between data sets and environments
• Designed to answer the why behind performance changes
• Integrated validation
• Architected to iterate and improve 
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1How does ML observability differ from data and software application observability?
 
It’s also worth noting that ML observability is distinct from its equivalents in the 
world of software or data applications. Data observability, for example, typically 
uses tables as the base for monitoring and examines data and schema changes 
to get to the bottom of issues. Software or infrastructure observability traces 
and troubleshoots response times for a given app or system. Machine learning 
observability, in contrast, treats models as the base of monitoring and sets 
baselines from training, validation, or prior time periods in production to then 
compare shifts, perform analysis and root cause performance degradation.
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1Understanding Model Failure Modes 
Once bought into the need for observability for detecting and diagnosing 
regressions in models, a question naturally arises: what should I monitor in 
production? The answer, of course, depends on what can go wrong.

In this section, we will be providing some more concrete examples of potential 
failure modes along with the most common symptoms that they exhibit in your 
production model’s performance.

As with most things in the world, a model’s task is likely to change over time. 
Concept Drift or Model Drift is a model failure mode that is caused by shifts 
in the underlying task that a model performs, which can gradually or suddenly 
cause a regression in the model’s performance.

Concept Drift Example

To put it a bit differently, the task that your model was trained to solve may not 
accurately reflect the task it is now faced in production.

For example, imagine that you are trying to predict the sentiment of a particular 
movie review and your model was trained on reviews from the early 1970s. If your 
model is any good, it has probably learned that the review, “Wow that movie was 
‘bad’”, carries negative sentiment; however fast forward into the world of 1980s 
slang, and that exact same review might mean that the movie was fantastic.

So the input to the model didn’t change, but the result did—what happened? 
The fundamental task of mapping natural language to sentiment has shifted 
since the model was trained, causing the model to start making mistakes where 
it used to predict correctly.
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1This shift can happen gradually over time, but as we are too often reminded 
these days, the world doesn’t always change gradually. This fundamental 
unpredictability about when exactly concept drift is going to happen 
necessitates a good suite of model monitoring tools.

If you notice that not much has changed in the distribution of your model 
inputs, yet your model performance is regressing, concept drift may be a 
contributing factor.

Data lies at the very center of model creation, and data practices can make or 
break how a model performs in production. In the real world, the distribution of 
your model’s inputs are almost certain to change over time, which leads us to 
our next model failure mode: Data Drift or Feature Drift.

Feature Drifting 
from Training
Let’s imagine you’ve 
just deployed a model 
that predicts how many 
streams an album 
is going to get in its 
first day on Spotify or 
Apple Music. Now that 
your model has been 
deployed to production 
for a while, and has been correctly predicting Drake’s meteoric smash hits, you 
start to notice that your model is starting to make some dramatic mistakes.

Feature Drift Causing Model Performance Issues
After some inspection 
you notice that some 
new artists and trendy 
genres are attracting a 
majority of the streams, 
and your model is 
making large mistakes 
on these albums.

So what could have 
possibly gone wrong?
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1The distribution in your model’s inputs are statistically different from the 
distribution on which it was trained. In other words, your data has drifted and 
your model is now out of date. Just like concept drift, data drift can creep up on 
your model slowly or hit it hard and fast.

One important thing to mention is that it’s quite common to confuse data drift 
with training-prod skew. Training-prod skew is when the distribution of your 
training data differs meaningfully from the distribution of production data. 
Going back to our previous example, if you had only trained your album model 
with country music, it will likely not perform well when it sees a new jazz album 
hit the discovery tab.

Training-
production Skew
In both the case of 
data drift and training-
prod skew, the model 
is experiencing a 
distribution of model 
inputs in production 
that it did not see while 
training, which can lead 
to worse performance 
than when validating the 
model. So how can we 
tell the difference?

If your model is unable to achieve close to its validation performance as soon as 
you deploy you model, you likely are facing training-prod skew, and you might 
want to rethink your data sampling techniques to curate a more representative 
dataset; however if your model match has exhibited good production results 
in the past and you are seeing a slow or sudden dip in performance, it’s very 
possible that you are dealing with the effects of data drift.

Cascading Model Failures
As machine learned models take the world by storm, it has become more 
and more common for products to contain a number of machine learned 
components. In many cases the output of one model is even used directly or 
indirectly as an input to another model.

Since these models are often trained and validated separately on their own 
datasets, a head-scratching failure mode is bound to pop up. While both models’ 
performance can improve in their offline validation performance, they can 
regress the product as a whole when deployed together.

Training vs Production
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1To demonstrate this concept, let’s pretend that you work on Alexa. Your team is 
responsible for a speech recognition model that transcribes a user’s speech into 
text, while a partner team is responsible for classifying these transcribed queries 
into an action that Alexa can perform for the user.

One day, you discover a breakthrough that improves your team’s speech 
recognition results by 10% on the validation datasets; however, when you get back 
to your desk the next day after deploying the updated model you see a huge 
regression in Alexa’s accuracy in selecting the action that the user requested.

What happened? Well, in making this change to the speech recognition model, 
the output distribution of the transcribed utterances changed in a statistically 
significant way. Since these outputs are the inputs to the action classification 
model, this caused the action predictions to regress, causing your users to sit 
through a terrible song when they just wanted to set a timer.

To diagnose these cascading model failures, a model observability tool must be 
able to track the changes to the input and output distributions of each model to 
be able pinpoint which model introduced the regression in overall performance.

In the previous sections we have been primarily concerned with group statistics 
surrounding the model’s performance; however, sometimes how your model is 
performing on a few examples is more concerning.

In an ideal world, there would be no surprises when you deploy your model to 
production. Unfortunately, we do not live in an ideal world. Your model will likely 
face anomalous inputs and occasionally produce anomalous results.

Sometimes finding these examples are like finding a needle in a haystack. You 
can’t address the underlying problem in your model if you can’t find it.

Outlier: Lower Dimensional Mapping
Understanding outliers is typically viewed as 
a multivariate analysis across all of the input 
features finding individual predictions that are 
outliers. Contrast this with the drift description 
above which is really a general statistic of a 
single feature over a group of predictions.

Drift: Group of Predictions—Univariate statistic 
on a feature or model output

Outlier: Individual Prediction or Small Group of 
Predictions—Multivariate analysis across features
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1Model owners need a line of defense to detect and protect against these nasty 
inputs. One technique to accomplish this is to employ an unsupervised learning 
method to categorize model inputs and predictions, allowing you to discover 
cohorts of anomalous examples and predictions.

This is where model observability tools shine in helping you tighten your training, 
evaluating, deploying, and monitoring loop.

If you are seeing a number of examples that don’t fit well into the groups of the 
more prototypical examples, this could be evidence of some edge cases your 
model has never seen. In either case these examples may be good candidates for 
you to include and potentially upsample in your training to shore up these gaps.

Anomalous examples can occur just by chance, but they can also be generated 
by an adversary who is trying to trick your model. In many business critical 
applications, especially in the financial sector, model owners have to be hyper-
vigilant to monitor for adversarial inputs that are designed to make a model 
behave in a certain way.

In 2018, Google brought attention to adversarial attacks on machine learned 
image classification models by demonstrating how a small amount of noise, 
imperceptible to the human eye, added to an image could cause the model to 
wildly misclassify.

In applications where every hour counts, the speed in which you can identify a 
new attack, patch the vulnerability, and redeploy your model may make all the 
difference in the success of your business.

In summary, there are a number of model failure modes to be on the lookout 
for, and they rarely affect your model in isolation. To piece together why 
your model’s performance may have degraded or why your model is 
behaving erratically in particular cases, you must have the proper 
measurements to deduce what’s going on. Model monitoring 
tools fill this role in the machine learning workflow and 
empower teams to constantly improve models after 
they’ve been shipped into the world.
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Performance analysis of production models can be complex, and every situation 
comes with its own set of challenges. Unfortunately, not every model application 
scenario has an obvious path to measuring performance like the toy problems 
that are taught in school.

This section will cover a number of challenges connected to availability of ground 
truth and discuss the performance metrics that are available to measure models 
in each scenario.

The ideal ML deployment scenario, often what they teach you in the classroom, 
is when you get fast actionable and fast performance information back on the 
model as soon as you deploy your model to production.

This ideal view looks something like this:

Model Performance

ML Observability: Best Practices
There are several components that are needed to make a model work 
successfully: the service that actually renders the model, the data that is flowing 
in and out of the model—including features and predictions—and the model 
itself. Each of these components need to be working as expected in order for any 
model to be successful. 

A failure in any of these components—say, concept drift causing performance 
degradation—can negatively impact the very business results that the model 
was designed to improve. Therefore, we need to measure all of these to have a 
complete picture. The sections below break out best practices across each, diving 
into model performance, data quality, drift, explainability and service health. 

Ground Truth in Production
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In this example ground truth is surfaced to you for every prediction and there 
is a direct link between predictions and ground truth, allowing you to directly 
analyze the performance of your model in production.

There are many industries that are lucky enough to face this ideal scenario. 
This is the case in digital advertising where a model attempts to predict which 
ad a consumer is most likely to engage with. Almost immediately after the 
prediction is made, the ground truth, whether they clicked or not,  
is determined.

For another example of this ideal scenario we can take a look at predicting food 
delivery estimates. As soon as the Pizza has arrived at the hungry customer’s 
house, you know how well your model did.

Once you have this latent ground truth linked back to your prediction event, 
model performance metrics can easily be calculated and tracked. The best 
model metric to use primarily depends on the type of the type of model and 
the distribution of the data it’s predicting over. Here are a few common model 
performance metrics:

Accuracy: General overall accuracy is a common statistic useful when classes 
are balanced.

Recall: Useful for unbalanced classes. What fraction of overall positives did I  
get correct.

Precision: Useful for unbalanced classes. What fraction of positive 
identifications were correct.

F1: Useful for unbalanced classes and allows for analysis of trade off between 
Recall and Precision.

MAE or MAPE: Regression or Numeric Metric performance analysis. MAPE can 
be good when the percent of how far off you are matters.

Once a model metric is determined, tracking this metric on a daily or a  
weekly cadence allows you to make certain that performance has not  
degraded drastically from when it was trained or when it was initially  
promoted to production.

However as you have surely predicted by now, this ideal scenario is the 
exception and not the rule. In many real world environments access to ground 
truth can vary greatly, and with it the way the tools you have at your disposal to 
monitor your models.
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While many applications enjoy realtime ground truth for their model’s 
predictions, many model application scenarios have to wait a while to know how 
their model should have behaved in production.

Imagine you are trying to predict which of your customers are creditworthy and 
which ones of them are likely to default on a loan. You likely won’t know if you 
made a good decision until the loan is paid off or the customer defaults. This 
makes it tricky to ensure that your model is behaving as expected.

This delay in receiving ground truth can also not have a fixed time scale. Take, 
for example, trying to classify which credit card transactions are fraudulent. You 
likely won’t know if a transaction was truly fraudulent until you get a customer 
report claiming that their card was stolen. This can happen a couple of days, 
weeks, or even months after the transaction cleared.

In these cases, and a number of others, the model owner has a significant time 
horizon for receiving ground truth results for their model’s predictions.

Ground Truth - 2 Month Lag

In this above diagram, while we do see that ground truth for the model is 
eventually determined, the model’s predictions over the last month have not 
received their corresponding outcomes.

When this ground truth delay is small enough, this scenario doesn’t differ too 
substantially from real time ground truth, as there is still a reasonable cadence 
for the model owner to measure performance metrics and update the model 
accordingly as one would do in the realtime ground truth scenario.

However, in systems where there is a significant delay in receiving ground truth, 
teams may need to turn to proxy metrics. Proxy metrics are alternative signals 
that are correlated with the ground truth that you’re trying to approximate.
For example, imagine you using a model to which consumers are most likely 
to default on their credit card debt. A potential proxy metric for success in this 
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scenario might be the percentage of consumers you have lent credit to that 
make a late payment.

So while you don’t have access to ground truth yet, you can start to see how 
the proxy metrics that you can compute in the meantime change over time to 
measure how your model is performing.

Proxy metrics serve as a powerful tool in the face of delayed ground truth as they 
give a more up to date indicator of how your model is performing.

Case 3: Causal Influence on Ground Truth (Biased Ground Truth)
One important thing to note is that not all ground truth is created equal. There 
are some cases where teams receive real time ground truth; however, the 
model’s decisions substantially affect the outcome.

Prediction of Credit Cohort

In this example, we are trying to predict who is credit worthy enough to receive 
a loan. This becomes tricky because when you decline someone’s credit, you no 
longer have any information about whether they could have paid you back.

In other words, only the people you decide to give a loan to will result in 
outcomes that you can use to train future models on. As a result, we will never 
know whether someone the model predicted will default could have actually 
paid the loan back in full.
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This may lead you to throw your hands in the air and accept that your ground 
truth is just going to be biased; however, you do have some tools at your disposal.

Something you can do is create a hold-out set where you don’t follow your 
model’s predictions and compare the difference in prediction performance 
between this hold-out set and the set using the model’s predictions.

You can use these two sets that received different treatments to look for 
validate your models predictions and, in our example’s case, ensure that you’re 
not potentially missing a potential set of credit worthy people that your model 
was missing.

As someone working with data, you will 
most likely see this picture pop up often. 
No discussion of bias in data is complete 
without a reference to it.

As the story goes, engineers in WW2 
created a heatmap of locations where 
bullet holes pierced the planes that 
came back from battle with the 
intention of determining where 
to fortify the armor. One day a 
statistician named Ahbrahm Wald 
noted that the heatmap was only 
created from planes that had made 
it back from their missions. So, in 
fact, the best place to put armor 
was probably where the empty 
space existed, such as the engines, 
as the planes that were hit in these 
locations never made it home.

In short: always be conscious of the 
bias in your ground truth data.
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Case 4: No Ground Truth
This brings us to the worse case scenario for a modeling team: having no ground 
truth feedback to connect back to model performance.

In the above example we have ground truth in our validation and training sets to 
link back to our model’s predictions; however in production, we have little to no 
feedback on how our model is performing.

Again in this scenario proxy metrics for ground truth can be extremely useful. 
In the absence of ground truth, if you can find something else that correlates to 
ground truth, you can still get a sense of how your model is performing over time.

Outside of proxy ground truth metrics, even when ground truth is hard to collect, 
it’s important for teams to find a way to collect a sample of ground truth data.

One way to acquire this ground truth data is to hire human annotators or 
labelers to provide feedback on their model’s performance. This approach can 
be expensive and time consuming; however, the reward for having a set of high-
quality ground truth data is immense.

In the periods where ground truth is available or has been collected through 
manual annotation, performance or lagging performance metrics can be used. 
Though these lagging performance metrics are not quite as good at signaling 
a sudden model performance regression in a real time application, they still 
provide meaningful feedback to ensure that the models performance is moving 
in the right direction over time.

No Ground Truth in Production
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Drift is a Proxy for Performance
While these lagging performance metrics can’t immediately signal a change 
in a model’s performance, measuring the shift in the distribution of prediction 
outputs potentially can. A drift occurring in the output prediction can be used to 
alert the team of aberrant model behavior even when no ground truth is present.

Some metrics you can use to quantify your prediction drift are distribution 
distance metrics, such as: Kullback-Leibler Divergence, Population Stability Index 
(PSI), Jensen-Shannon Divergence, etc. For a full guide on using statistical 
distances in machine learning, see Arize’s separate white paper on the subject.

Model Metric by Cohort
As much as data scientists like to deal with aggregate optimization statistics the 
reality is that models affect different people, customer segments, and business 
decisions differently.

Two candidate models with the same accuracies could affect particular sets of 
individuals dramatically differently, and these differences can be very important 
to your business.

Teams typically divide their data into “slices” or “cohorts”. These cohorts can 
be discovered over time or they are built on the fly to debug where a model is 
making a disproportionate amount of mistakes.

No Ground Truth in Production

https://arize.com/resource/using-statistical-differences-for-machine-learning/
https://arize.com/resource/using-statistical-differences-for-machine-learning/
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In this example above, we see that grouping data based on features such as high 
net worth, low FICO scores, and the presence of a recent default provides important 
information about how the model is performing for these particular cohorts.

Above the overall accuracy of 90% is really hiding the fact that the model is performing 
terribly at predicting credit worthiness for people who have recently defaulted.

Cohort Prediction: Facets/ Slices of Groups

Measuring model performance across cohorts is similar to measuring model 
performance in aggregate. Performance should be measured for each 
cohort that is important to the business and an alert should be issued when 
performance drops below a threshold defined by training or initial model launch.
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Measuring Business Outcomes
Now that we have talked about measure model performance by selecting 
the right model metrics for your application scenario, let’s briefly talk about 
measuring business metrics.

Business metrics go hand in hand with the model metrics and when properly 
defined, they should be linked. At the end of the day, you aren’t shipping a F1 
score to your customers, and as a result it’s important to keep in touch with how 
your models are affecting how each customer is experiencing your product.

Business metrics tend to not be well suited for traditional optimization, yet 
they provide key insights into a business goal. Since these metrics are not easy 
for a model to optimize for, the optimization problem will be set up using a 
parallel metric.

Turning to the credit worthiness example again, while your model might be 
optimizing for a traditional model metric such as accuracy or F1, a business 
metric you might want to be monitoring is the percentage of people you turn 
away from credit.

At the end of the day a product manager on your team might not care about 
MAPE, but they will care about how your users are experiencing your product. 
Measuring model evaluation metrics doesn’t usually capture how many angry 
customers you might have.

As you may have picked up, identifying and measuring business metrics is 
an extremely important process for ensuring your effort is being well spent in 
improving your product.

In summary, measuring model performance is not one size fits all, and your 
business application may require some or all of these measurement techniques 
that we discussed.

While the path toward measuring your model’s performance is not always 
clear cut, what is clear is that correctly measuring your model’s performance 
is essential to ensuring you are shipping a consistent and effective product to 
your customers.
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why a model made a particular prediction has become more and more difficult. 
As a result, it has become even more important that we have the ability to 
explain how they make their predictions.
In this section, we will lay out the different levels of ML explainability, and how 
each of these can be used across the ML Lifecycle. Lastly we will cover some 
common methods that are being used to obtain these levels of explainability.

Explainability in Training
To start, let’s cover how explainability can be used to help during the model 
training phase of the machine learning life-cycle. In particular, let’s begin by 
starting to tease apart the different flavors of ML explainability.

Of particular importance in training is global explainability. We consider 
an ML engineer to have access to global model explainability if across all 
predictions they are able to attribute which features contributed the most to the 
model’s decisions. The key term here is “all predictions,” unlike cohort or local 
explainability—global is an average across all predictions.

In other words, global explainability lets the model owner determine to what 
extent each feature contributes to how the model makes its predictions over all 
of the data.

In practice, one area global explainability is used is on an ad hoc basis to provide 
information to non-data science teams about what the model, on average, uses 
to make decisions. Example: marketing teams, looking at a churn model, might 
want to know what are the most important features to predict customer churn.

In this use case, the model provides global insights to stakeholders outside of 
data science, and how often it is needed and for whom can vary—it’s more of an 
analytical function to provide business stakeholders more insights.

There is also a model builder use case for global explainability, namely ensuring 
a model is doing what you expect and hasn’t changed version to version. There 
may be unforeseen ways your model can “learn” the function you set out to teach 
it, and without the ability to understand what features it’s relying on it’s hard to 
say which function it chose to approximate.

Explainability
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Let’s take a model that 
predicts the credit limit 
that a new customer 
should get for your bank’s 
new credit card. There are 
a number of ways that this 
model can accomplish its 
job of assigning a credit 
limit to this new customer, 
but not all are created 
equal. Explainability tools 
can help build confidence 
that your model is learning 
a function that isn’t over-
indexing on particular 
features that may cause 
problems in production.

For example, let’s say a 
model is relying extremely 
heavily on age to make its prediction of what credit limit to assign. While this 
may be a strong predictor for ability to repay large credit bills, it may under-
predict credit for some younger customers who have an ability to support a 
larger credit limit, or over-predict for some older customers who perhaps no 
longer have the income to support a high credit limit.

Explainability tools can help you find potential issues like this before shipping 
a model to production. Global explainability helps spot check how features in 
the model are contributing to the overall predictions of the model. In this case, 
global explainability would be able to highlight age as a primary feature that the 
model is relying on, and allow the model owner to understand how this might 
impact cohorts of their users and take action.

During training, global explainability is instrumental in gaining confidence in 
the features you choose to provide your model for its predictions. Often, a model 
builder will add a large number of features and observe a positive shift in a 
key model performance metric. Understanding which features or interactions 
between features drove this improvement can help you build a leaner, quicker, 
and even a more generalizable model.

Explainability in Validation
Onto the next phase of the ML lifecycle: model validation. Let’s take a look at 
how explainability can help model builders validate models before shipping 
them to production.
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To this end, it’s important to define our next class of model explainability: Cohort 
Explainability. Sometimes you need to understand how a model is making its 
decisions for a particular subset of your data, also known as a cohort. Cohort 
explainability is the process of understanding to what degree your model’s 
features contribute to its predictions over a subset of your data.

Cohort explainability can be incredibly useful for a model owner to help explain 
why a model is not performing as well for a particular subset of its inputs. It can 
help discover bias in your model and help you uncover places where you might 
need to shore up your datasets.

Taking a step back, during validation, our primary objective is to see how our 
model would hold up in a serving context. To be more specific, validation is 
about probing how well your model has generalized from the data that it was 
exposed to in training.

A key component in assessing 
generalization performance 
is uncovering subsets of your 
data where your model may be 
underperforming, or relying on 
information that might be too 
specific to the data that it was 
trained on, also commonly known 
as overfitting.

Cohort explainability can serve as a 
helpful tool in this model validation 
process by helping to explain 
the differences in how a model 
is predicting between a cohort 
where the model is performing well 
versus a cohort where the model is 
performing poorly.

For example, let’s say that you have a model for predicting credit scores for a 
particular user and you want to know how the model is making its prediction 
for your users that are below the age of 30. It’s worth noting the most important 
feature for this group, “charges,” is different from the global feature importance. 
Cohort explainability can help investigate how your model is treating these 
users in comparison to some other cohort of your data, such as users above 
the age of 50. This can help you uncover somewhat unexpected or undesirable 
relationships between input features and model outcome.
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Another important benefit that cohort explainability buys you is the ability to 
understand when to split your model into a collection of models and federate 
their predictions. It’s very possible that the function you are trying to learn is 
best handled by a federation of models, and cohort explainability can help you 
discover the cohorts for which a different feature set or model architecture 
might make more sense.

Explainability in Production
Lastly, let’s take a look at how explainability can help a model owner in the 
production context. Once the model has left the research lab and has been 
served into production, the needs of a model owner change a bit.

In production, model owners 
need to be able to answer all-
of-the-above Cohort and Global 
explainability, in addition to 
questions about very specific 
examples to help with customer 
support, enable model auditability, 
or even just provide feedback to 
the user about what happened.

This leads us into our last class of 
ML explainability: Individual, also 
known as Local Explainability. This 
is somewhat self explanatory, but 
local explainability helps answer 
the question, “for this particular 
example, why did the model make 
this particular decision?”

The level of specificity is an incredibly useful tool in the toolbox for an ML 
engineer, but it’s important to note that having local explainability in your system 
does not imply that you have access to global and cohort explainability.

Local explainability is indispensable for getting to the root cause of a particular 
issue in production. Imagine you just saw that your model has rejected an 
applicant for a loan and you need to know why this decision was made. Local 
explainability would help you get to the bottom of which features were most 
impactful in making this loan rejection.
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Especially in regulated industries, such as lending in our previous example, local 
explainability is paramount. Companies in regulated industries need to be able 
to justify decisions made by their model and prove that the decision was not 
made using features or derivatives of protected class information.

Note: In all our examples we used the absolute values of Shap for visualization; 
these hide the directional information of the individual features.

The prediction-level shap 
with directional information 
can illustrate how the feature 
influences an outcome—in 
this case, “charges” decreases 
the probability of default 
where “age” increases.

As more and more regulation 
impacts technology, 
companies are not going to 
be able to hide behind ML 
black boxes to make decisions 
in their products. If they would like to reap the benefits of machine learning, they 
are going to have to invest in solutions that provide local explainability.

When the model is served and making predictions for your users, individual 
inference level explainability can act as a fantastic entry point into understanding 
the dynamics of your model. As soon as you see a model prediction that may 
have gone awry, either from a bug report or monitoring thresholds that you set 
up, this can start an investigation into why this happened.

It may lead you to discover which features contributed most to the decision, and 
even cause you to dive deeper into a cohort that may also be affected by this 
relationship you uncovered. This can help close the ML lifecycle loop, allowing 
you to go from “I see a problem with an individual example” to “I have discovered 
a way to improve my model.”

Common Methods In ML Explainability:
Now that we have defined some broad classes of ML explainability and how they 
might be used in different stages of the ML Lifecycle, let’s turn our attention 
toward a few techniques that are powering ML explainability solutions today.
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SHAP – SHapley Additive exPlanations
To start, let’s take a look at SHAP which stands for SHapley Additive exPlanations. 
SHAP is an explainability technique that developed from concepts in cooperative 
game theory. SHAP attempts to explain why a particular example differs from 
the global expectation from a model.

For each feature in your model, a Shapley 
value is computed which explains how this 
feature contributed to the difference between 
the model’s prediction for this example as 
compared to the “Average” or expected 
model prediction.

The SHAP values of all the input features will always sum up to the difference 
between the observed model output for this example and the baseline 
(expected) model output, hence the additive part of the name in SHAP.

SHAP can also provide global explainability using the Shapley values computed 
for each data point, and even allows you to condition over a particular cohort to 
gain some insight on how feature contributions differ between cohorts.

Using SHAP in the model-agnostic context is simple enough for local 
explainability, though global and cohort computations can be costly without 
particular assumptions about your model.

LIME – Local Interpretable Model-Agnostic
LIME, or Local Interpretable Model-Agnostic Explanations, is an explainability 
method that attempts to provide local ML explainability. At a high level, LIME 
attempts to understand how perturbations in a model’s inputs affect the end-
prediction of the model. Since it makes no assumptions about how the model 
reaches the prediction, it can be used with any model architecture, hence the 
“model-agnostic” part of LIME.

http://bjlkeng.github.io
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LIME attempts to understand this relationship between a particular example’s 
features and the model’s prediction by training a more explainable model such as 
a linear model with examples derived from small changes to the original input.

At the end of training, the explanation can be found from the features for 
which the linear model learned coefficients above particular thresholds (after 
accounting for some normalization). The intuition behind this is that the linear 
model found these features to be most important in explaining the model’s 
prediction, and therefore for this local example you can reason about the 
contributions that each feature made in explaining the prediction that your 
model made.

Implications
One of the most common critiques of modern machine learning is the absence 
of explainability tools to build confidence in, provide auditibability for, and enable 
continuous improvement of machine learned models. Today, there is a keen 
interest in surmounting this next hurdle. As evidenced by some of the modern 
explainability techniques covered, we are well on our way.
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In practice today, a model is often only as good as the data it is trained on. Data 
quality doesn’t stop being important after the model is trained, but continues 
to remain important as the model is deployed in production. The quality of 
the model’s predictions is highly dependent on the quality of the data sources 
powering the model’s features.

What Do We Mean by Data Quality?
Data quality is a broad term and can cover a wide variety of issues in your data. 
For the purposes of this section, data quality refers to hard failures in data 
pipelines. Other important issues around data quality—such as “slow bleed” 
failures or gradual drift in your data over time—will be covered in a subsequent 
section titled “What Can Go Wrong: Model Failure Modes.”

To dig deeper, it’s necessary to define and break out categorical data streams 
versus numerical data streams.

Categorical Data
Categorical data is just what it sounds like: a stream of categories, like the type of 
pet someone owns (dog, cat, bird, pig, etc.).

Cardinality Shifts
To start, something that can go wrong with a categorical data stream is a sudden 
shift in the distribution of categories. To take it to an extreme, let’s say your 
hypothetical model predicting which pet food to buy for your pet supply store 
starts seeing data saying that people only own cats now. This might cause your 
model to only purchase cat food, and all your potential customers with dogs will 
have to go to the pet supply store down the street instead.

Data Quality

Data Type Mismatch
In addition to a sudden cardinality 
shift in your categorical data, your 
data stream might start returning 
values that are not valid to the 
category. This is, quite simply, a 
bug in your data stream, and a 
violation of the contract you have 
set up between the data and 
the model. This could happen 
for a variety of reasons: your data 
source being unreliable, your data 
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processing code going awry, some downstream schema change, etc. At this 
point, whatever comes out of your model is undefined behavior, and you need 
to make sure to protect yourself against type mismatches like this in categorical 
data streams.

Missing Data
One incredibly common scenario that practitioners run into is the problem of 
missing data. With the rising number of data streams used to compute large 
feature vectors for modern ML models, the likelihood that some of these values 
will be nil is higher than ever. So what can you do about it?

One thing you certainly can do is throw your hands up in the air and discard the 
row in a training context, or throw an error in your application in a production 
context. While this will help you avoid this problem, it’s possibly not the most 
practical. If you have hundreds, thousands, or tens of thousands of data streams 
used to compute one feature vector for your model, the chance that one of these 
streams is missing can be very high!

This brings us next to how you might fill this missing value, commonly referred 
to as imputation. For categorical data, you could choose the most common 
category that you have historically seen in your data, or you could use the values 
that are present to predict what this missing value likely is.

Numerical Data
A numerical data stream is also pretty self-explanatory. Numerical data is data 
that is represented by numbers, such as the amount of money in your bank 
account, or the temperature outside in Fahrenheit or Celsius.

Out of Range Violations
To start things off, something that can go wrong with numerical data streams 
is out of range violations. For example, if age was an input to the model and you 
are expecting the age to be between 0–120, but suddenly receive a value in the 
300s, this would be considered out of range.

Type Mismatch
Type mismatch can also affect numerical data. It’s in the realm of possibility that 
for a particular data stream where you are expecting a temperature reading 
that you are returned a categorical data point, and you have to handle this 
appropriately. It’s possible that the default behavior may be to cast this categorical 
value to a number that, although now valid, has entirely lost its semantic meaning 
and is now an error in your data that is incredibly hard to track down.
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Missing Data
For numerical data, you have a few more options for imputations, such as taking 
the average, median, or some other distribution metric for this particular value. 
The complexity of your solution to this problem is entirely up to your application 
scenario, but it’s important to know that no solution is perfect here.

Challenges with 
Monitoring Data Quality 
Today
Now that we have 
gotten a better idea 
of what possible data 
quality issues you may 
run into, let’s now 
briefly dive into some 
common challenges that 
practitioners run into 
when attempting to keep 
tabs on the quality of 
their data.

Before we start here, it’s 
important to note that this is different from the broad product space of data 
observability. Data observability tools are mostly focused on monitoring the 
quality of tables and data warehouses, while ML Observability is focused on 
monitoring the inputs and outputs of models. These models are consistency 
evolving, features are being added and changed, and so the data quality 
monitoring of models must be able to evolve with the schema of the model.

Too Much Data to Keep Tabs on
It’s not surprising to many current ML practitioners that many models these 
days rely on tons of features to perform their tasks. One rule of thumb, guided 
by recent advances in statistical learning theory, suggests that a model can 
effectively learn approximately a feature for every 100 examples you have in a 
training set. With training set sizes exploding into the hundreds of millions and 
even billions, models with feature vector lengths in the tens and hundreds of 
thousands are not uncommon.

This leads us to a major challenge that practitioners face today. To support these 
incredibly large feature vectors, teams have poured larger and larger data streams 
into feature generation. Writing code to monitor the quality of each of these data 
streams is fundamentally untenable, and the reality is that this data schema will 
inevitably change often as the team experiments to improve the model.
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At the end of the day, no one wants to sit there and hand configure thresholds, 
baselines and set up a custom data monitoring system for each of these data 
streams that are feeding into the model. It’s common to add a feature, drop 
a feature, change how it is computed, and adding more work into the ML 
development loop will only slow you and your team down.

What now?
Now that we understand some of the current challenges around monitoring 
and fixing data quality issues, what can we do about it? To start, teams need to 
start keeping track of how the quality of their data affects the end performance 
of their model.

Leverage Historical Information
Ultimately the model’s performance is what we care about, and it’s very 
possible that the quality of some data is worth more than that of others. To 
avoid manually creating baselines and thresholds for each data stream, teams 
need to have a history of data to look at either from training sets or from 
historical production data.

Once these historical 
distributions have been 
determined, your monitoring 
system can have a better idea 
about what it should consider 
an outlier in a numerical 
stream, and generate alerts 
when a categorical stream 
has strongly deviated from its 
historical distribution. From 
these distributions, intelligent 
baselines and thresholds can be 
created to balance how “noisy” 
or likely to fire these alerts are, 
giving power to the model team 
to balance risk vs reward.

On top of setting up automatic alerting systems for all of your data streams, 
your data quality monitoring system should also allow you to enforce type 
checks to protect against downstream errors in your model and avoid potential 
typecasting issues.
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Hill Climb using Model Performance
Lastly, by keeping track of your model’s end performance, your monitoring 
system should also allow you to test out different imputation methods for your 
data and give you the performance impact for this new imputation strategy. This 
provides confidence that the choices you are making are positively impacting 
the end performance of the model.

As fast as machine learning has progressed and made its way into some 
of our most crucial products and services, the tooling to support these 
experiences has lagged behind. These core features of a modern data quality 
monitoring system bring back control to the ML engineer and remove a large 
amount of guesswork, which unfortunately has crept very deeply in the art of 
productionizing machine learning.
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As an ML practitioner, you probably have heard of drift. In this piece, we will dive 
into what drift is, why it’s important to keep track of, and how to troubleshoot 
and resolve the underlying issue when drift occurs.

Model and Feature Drift2

What Is Drift?
First things first, what is drift? Drift is a change in distribution over time. It can be 
measured for model inputs, outputs, and actuals. Drift can occur because your 
models have grown stale, bad data is flowing into your model, or even because of 
adversarial inputs.

Now that we know what drift is, how can we keep track of it? Essentially, tracking 
drift in your models amounts to keeping tabs on what had changed between 
your reference distribution, like when you were training your model, and your 
current distribution (production).

Models are not static. They 
are highly dependent on 
the data they are trained 
on. Especially in hyper-
growth businesses where 
data is constantly evolving, 
accounting for drift is 
important to ensure your 
models stay relevant.

Change in the input 
to the model is almost 
inevitable, and your model 
can’t always handle this 
change gracefully. Some 
models are resilient to 
minor changes in input 
distributions; however, as these distributions stray far from what the model 
saw in training, performance on the task at hand will suffer. This kind of drift is 
known as feature drift or data drift.

It would be amazing if the only things that could change were the inputs to 
your model, but unfortunately, that’s not the case. Assuming your model is 
deterministic, and nothing in your feature pipelines has changed, it should give 
the same results if it sees the same inputs.

2 NOTE: this section is adapted from a previous article written in collaboration with Hua Ai,  
   Data Science Manager at Delta Air Lines.

https://www.linkedin.com/in/hua-ai-baaa335/
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While this is reassuring, what would happen if the distribution of the correct 
answers, the actuals, change? Even if your model is making the same predictions 
as yesterday, it can make mistakes today! This drift in actuals can cause a 
regression in your model’s performance and is commonly referred to as concept 
drift or model drift.

How Do I Measure Drift?
As we talked about previously, we measure drift by comparing the distributions 
of the inputs, outputs, and actuals between training and production.

But how do you actually quantify the distance between these distributions? For 
that, we have distribution distance measures. To name a few, we have

1. Population Stability Index (PSI)
2. Kullback — Leibler divergence (KL divergence)
3. Wasserstein’s Distance

While each of these distribution distance measures differs in how they compute 
distance, they fundamentally provide a way to quantify how different two 
statistical distributions are.

This is useful because you can’t build a drift monitoring system by looking at 
squiggles on charts. It would be best if you had an objective, quantifiable ways 
of measuring how the distribution of your inputs, outputs, and actuals are 
changing over time.

PSI Calc
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For example, in the above figure, we see a comparison in the distributions 
of how I spent my money this last year as compared to the year prior. 
The Y-axis represents the percentage of the total money I spent in each 
category, as denoted on the x-axis. To see if my allocation of money has 
changed significantly over the last year, we can calculate the population 
stability index (PSI) between these two distributions.

For each category in the budget, we calculate the difference in percentage 
between the reference distribution A (my budget last year) and the actual 
distribution B (my budget this year) and multiply this by the natural log of 
(A %/ B%). For each of these categories, take the sum of this value, which 
gives us our PSI.

For example, in the above figure, we see a comparison in the distributions 
of how I spent my money this last year as compared to the year prior. 
The Y-axis represents the percentage of the total money I spent in each 
category, as denoted on the x-axis. To see if my allocation of money has 
changed significantly over the last year, we can calculate the population 
stability index (PSI) between these two distributions.

For each category in the budget, we calculate the difference in percentage 
between the reference distribution A (my budget last year) and the 
actual distribution B (my budget this year) and multiply this 
by the natural log of (A %/ B%). For each of these categories, 
take the sum of this value, which gives us our PSI.

The larger the PSI, the less similar your distributions are, 
which allows you to set up thresholding alerts on the 
drift in your distributions.

Regardless of the distribution distance metric you are 
using, it’s important to not just measure the drift in your 
distributions but also to measure how these distance 
metrics relate to important business KPIs and metrics. By 
doing so, you can start to understand how the drift can actually 
impact your customers and help you understand what drift thresholds 
trigger alerts to your team.
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Can I Retrain My Model?
What should we do when we notice a trained model has drifted? A first 
thought could be, “let’s retrain it”! While retraining is usually necessary, how to 
retrain requires some more thoughts. Simply adding the most recent data into 
your training set and redeploying the same model architecture may not solve 
the problem.

To start, you have to be careful about how you sample this newer data and 
represent it in your model. If you add too much new data and cause an 
overrepresentation in your training set, you risk overfitting this newer data. By 
doing so, your model might not generalize well in the future, and it may impact 
its performance on inputs that it previously had no trouble with.

On the other hand, if you only add a few examples, your model likely won’t 
change much at all, and your model might still make the mistakes that you set 
out to resolve.

You can adjust this tradeoff by weighting the examples in your loss function 
to strike the right balance between these two competing forces. One way you 
might measure how to balance this tradeoff is by measuring your performance 
on one globally sampled hold-out set to approximate your generalization 
performance and on another hold-out set sampled just from the population of 
the newer data. If you are performing really well on the global hold outset but 
not the newer data, you can try upping the weight you assign to the new data in 
your training set and vice-versa.

While, in many cases, retraining your model is the right solution, some changes 
are so fundamental that a simple retrain won’t solve anything. If you cannot 
achieve an acceptable validation performance on your retrained model, it may 
be time to go back to the drawing board. If something in your business has 
fundamentally changed, your models may need to as well.
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It all starts with an alert — an email or a notification that something is off. Usually, 
it is a good practice to keep track of the change in performance and changes 
in the input data since those changes may provide answers to the change in 
performance. It is also important to understand where drift has happened on a 
specific slice of data or certain dates. That will help to diagnose the model and to 
come up with solutions.

A systematic evaluation is needed when a significant drift alert has been 
triggered for a period of time. It’s usually an art instead of science to decide how 
significant a drift becomes concerning since it depends on how the predictions 
are being used and the business value of the prediction. But here are some steps 
to get you started in resolving drift.

1. Repull Training Data
Identify what input features or outcome variables have drifted and understand 
how their distributions have changed. Carefully consider what time period 
should be included in the retraining. Resampling or weighting observations can 
be used to reconstruct a more balanced training data set.

How to Troubleshoot Drift
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2. Feature Engineering
Sometimes we’ll notice some features have drifted significantly but have not 
caused model performance issues. That is not something to be overlooked since 
that indicates the relationship between those features and the outcome variable. 
Re-construct and select features to adapt to the new dynamics in this data set.

It is also a good time to connect with the end-users of the model to understand 
if their business processes have changed. New features are often needed to 
capture the change.

3. Model Structure
Sometimes, the model structure should be revisited as well. For example, if only 
a slice of predictions has been impacted, a hierarchical model can be helpful to 
address this without changing the entire model.

How To Get Ahead of This?
Of course, doing all of these amidst a fire drill or crisis amplifies an already 
stressful situation. Imagine: you get a call from your business partners asking you 
to explain why the model significantly underperforms in one day since they need 
to explain an undesirable business outcome to their stakeholders. It is never easy 
to explain a model’s performance on a set of specific data points, especially in 
pressured situations. It can also cause people to make nearsighted decisions and 
over-adjust the model to catch the most recent trend.

A good practice is to set up a cadence to review model performance periodically 
instead of relying entirely on alarms to indicate when things have gone wrong. 
Regular reviews help to keep track of changing business dynamics and of 
thinking about model adjustments proactively. Also, it is important to set up a 
regular channel to communicate with end-users, hear about their feedback on 
the model, or learn about upcoming process changes. At the end of the day, 
the models are there to support the end-users. Therefore, user perceptions are 
equally important as model performance metrics.
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ML Service Health & Reliability3

One particular challenge that ML practitioners face when deploying models 
into production environments is ensuring a reliable experience for their users. 
Just imagine, it’s 3 am and you awake to a frantic phone call. You hop into a 
meeting and the CTO is on the line, asking questions. The number of purchases 
has suddenly plummeted in the newly launched market, resulting in a massive 
loss of revenue every minute. Social media has suddenly filled with an explosion 
of unsavory user reports. The clock is ticking. Your team is scrambling, but it’s 
unclear where to even start. Did a model start to fail in production? As the 
industry attempts to turn machine learning into an engineering practice, we 
need to start talking about solving this ML reliability problem.

An important part of engineering is ensuring reliability in our products, and 
those that incorporate machine learning should be no exception. At the end of 
the day, your users aren’t going to give you a pass because you are using the 
latest and greatest machine learning models in your product. They are simply 
going to expect things to work.

To frame our discussion about reliability in ML, let’s first take a look at what the 
field of software engineering has learned about shipping reliable software.

Reliability in Software
The Why
Virtually any modern technological enterprise needs a robust Reliability 
Engineering program. The scope and shape of such a program will depend on 
the nature of the business, and the choices will involve the trade-offs around 
complexity, velocity, cost, etc.

A particularly important trade-off is between velocity (“moving fast”) and 
reliability (“not breaking things”). Some domains, such as fraud detection, 
require both.

Adding ML into the mix makes things even more interesting.

Consider setting the goal of 99.95% availability. This gives us an outage budget 
of 5 minutes per week. The vast majority of outages (well over 90% in our 
experience) are triggered by human-introduced changes to code and/or 
configuration. This now also increasingly includes changes to production ML 
models and data pipelines.

3 This section is adapted from an earlier piece written in collaboration with Bob Nugman, ML Engineer at Doordash.
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It is common to have changes to production systems’ code and 
configuration to occur nearly continuously, with each change having the 
potential for creating an outage-inducing incident. Similarly, with increased 
reliance on ML, there’s an increasing appetite for high-velocity production 
delivery of ML systems, again with a risk of making a change that introduces 
a regression or an outage.

Allowing ourselves just one incident per week, the challenge then becomes 
to detect and fully mitigate an incident within five minutes, if we are to 
meet this goal. How?

There needs to be a systematic Reliability Program.

The Three Pillars of Reliability
A successful reliability program will have the following elements. Each will be 
covered in more detail below.

• Observability: Capability to 
detect, explore, and make 
sense of the regressions. 

• Management of Change: 
Tooling and practices 
to ensure that every 
change introduced (code, 
configuration, business 
rules, infrastructure, etc) is 
discoverable, observable, 
rolled out gradually, 
mitigable, revertible. 

• Incident Response:  
When (not if) an incident occurs, a pre-existing plan and capability is 
in place, to first mitigate and then revert the impact of the incident. 
The process of incident response includes the initiation of the post-
incident phase, including blameless post mortems, the findings of which 
feedback into improvement of all of the three pillars.

These three pillars exert pressure on the entire engineering process, 
technological stack, as well as the organization’s culture.

Let us explore the goals and some of the properties of each.
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Observability
A successful observability solution will enable us to:
• Detect a regression quickly;
• Inform a path to rapid and efficient mitigation; and
• Once the issue has been mitigated, inform the causes of the issue, so that the 

problem can be fully analyzed, understood, and addressed, usually through 
the post mortem process.

To be efficient, observability tools and practices need to be standardized 
across the org, while enabling the flexibility to meet the needs of every team. 
An observability team should formulate best practices and implement tools 
to enable developers to meet their observability needs, consistently and with 
minimum effort.

Management of Change
As noted above, most outages are triggered by one of the many changes to code 
and configuration. The goal of a Management of Change system is to ensure the 
changes are introduced in a centralized, systematic fashion which supports our 
reliability goals.

Similar to Observability, management of change (code, configuration, infra, 
ML models, etc) should be standardized across the org, while accommodating 
varying needs between teams. This is best achieved with a dedicated owner(s) 
for the management of change tooling and practices.

For additional reference, here is an example of well-constructed management-
of-change capability.

Incident Response
Despite our best preparation, truly unimaginable things will happen. At that 
time, a response should not look like an engineering activity with brainstorming, 
problem-solving, etc. It should look like an incident response, with a predefined 
structure, rehearsed roles, sharp specialized tools, and a mandate to operate.

Importantly, the other two pillars, Observability and Management of Change, are 
crucial for mounting a successful Incident Response capability.

Reliability in Machine Learning
Now that we have taken a look into what reliability means in the broad world of 
software engineering, let’s take our learnings to understand what problems the 
field of ML Ops needs to solve to help companies deploy reliable applications 
with machine-learned components.

https://www.usenix.org/conference/srecon17americas/program/presentation/yates
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To do so, let’s turn back our story about the late-night call from your CTO that we 
discussed a bit earlier. To give some more context, let’s say that the model that 
ranks your search results for your e-commerce company is returning strange 
results and is severely impacting customer conversions. Let’s take what happens 
here step by step.

The first step in the response to the problem has happened even before you 
got invited to the call with your CTO. The problem has been discovered and 
the relevant people have been alerted. This is likely the result of a metric 
monitoring system that is responsible for ensuring important business metrics 
don’t go off track.

Next, using your ML observability tooling, you are able to determine that the 
problem is happening in your search model since the proportion of users who 
are engaging with your top n-links returned has dropped significantly.

After learning this you rely on your model management system to either roll 
back to your previous search ranking model or deploy a naive model that can 
hold you over in the interim. This mitigation is what stops your company from 
losing (as much) money every minute since every second counts for users being 
served incorrect products.

Now that things are somewhat working again, you need to look back to your 
model observability tools to understand what happened with your model. There 
are a number of things that could have gone wrong here, some of which could 
inform your mitigation strategy, so it’s important to quickly start understanding 
what went wrong.

Lastly, once you have discovered the root cause of the issue, you have to come up 
with a solution to it, ranging from fixing a data source, retraining your model, to 
going back to the drawing board to devise a new model architecture.

Here is a deeper dive into each of these pieces that enable ML reliability in 
production products.

Observability
The key ingredient in making any system reliable is the ability to introspect the 
inner workings of the system. In the same way that a mechanic needs to peer 
under the hood of a car to see if your engine is running smoothly, an ML engineer 
needs to be able to peer under the hood of their model to understand how their 
model is fairing in production. While this seems obvious, many companies have 
been flying blind when it comes to deploying machine learning. Measuring your 
model’s performance via aggregate performance metrics is not observability.
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The best way to think about ML observability is how effectively your team can 
detect a problem with your model’s performance, perform mitigation to the 
problem to stop the bleeding, identify the root cause of the regression, and 
perform remediation or solution to the problem. It’s important to note that having 
the ability to detect a problem does not constitute full observability into an ML 
system. Without the ability to introspect to find the root cause or weight the sum 
of contributing factors, any resolution is going to be some form of guesswork.

To better illustrate what kind of things your tooling should be looking for, we first 
need to understand what are some things that can go wrong?

So what can go wrong?

What you should observe really depends on what can go wrong.

There are many different model failure modes and production challenges when 
working with ML models, each of which requires you to observe additional 
information in your system.

To start, the first step in the battle is detecting that an issue has occurred. How 
this is typically done is to measure a model performance metric such as running 
accuracy, RMSE, f1, etc. One catch is that this isn’t as easy as it sounds. In the 
ideal case, you know the ground truth of your model’s prediction pretty quickly 
after the model has made the decision, making it easy to determine how well 
your model is doing in production. Take, for example, predicting which ad a user 
might click on. You have a result around how well you did almost immediately 
after the model makes the decision. The user either clicked on it or they didn’t!

Many applications of ML don’t have this luxury of real-time ground truth, in 
which case proxy performance metrics such as relevant business metrics might 
be used instead. On top of model performance metrics, you may want to monitor 
service health metrics such as prediction latency, to ensure your service is 
providing a good experience for your users.

Once a regression has been detected by monitoring model performance or 
service health metrics, you need more information to understand what might 
be going on with your model. Some things that are important to keep tabs on to 
help with incident response:

https://arize.com/what-is-ml-observability/
https://arize.com/ml-model-failure-modes/
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Service:

• Latency of model predictions and user-facing latency
• Service downtime (pretty similar to software)

Data:

• New values in production unseen before in training
• Noisy or missing values in the data can have a big impact on the features 

consumed by a model.

Model:

• The underlying task that the model is performing can drift slowly or quickly 
change overnight!

• Your model may be biased in a way that was not designed (are some 
unexpected subsets of your users getting measurably different outcomes)

• Your model may be performing particularly poorly on some subsets of data 
(need to store and make sense of your model errors)

For each of these potential production challenges, your ML Observability toolset 
should enable your team to detect regressions and drill into them to best 
understand why they happened and what you can do about it.

Next, here are some tips on how to best manage shipping updates to your model 
in production.

Management of Change
Every time you push new changes into production, you risk introducing your 
users to issues that your team did not foresee and protect against.

In fact, let’s say for the sake of it that your search model is regressing on your 
hypothetical e-commerce platform due to a new model rollout. Now that 
your business metrics caught that something was going wrong, and your 
observability tooling pinpointed the search model, what do we do about it? We 
alluded previously to the difference between mitigation and remediation. Here, 
since we are rapidly losing the company money, it’s likely that the best course of 
action is to stop the bleeding as quickly as possible (mitigate the issue).

One option we may have is to revert back to the previous model we had 
deployed. Alternatively, we could ship our naive model, a model that may not 
have as good of performance but works consistently pretty well. In our case, this 
might just be displaying the exact results returned from elastic search.
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To best protect against these potential issues from occurring rapidly and 
dramatically for the users of your product, ML systems should follow similar 
rollout procedures to those of software deployments.

In the same way that software is typically tested using static test cases to 
ensure that the code is not regressing any behavior, ML systems should also 
undergo static validation tests before deployment. For example, if you are 
shipping an autonomous driving service, running your new model through some 
standardized deterministic simulator routes might allow you to catch some 
obvious regressions.

While static validation is exceedingly important for improving the quality of 
your shipping product, there is no replacement for what you learn about a 
model in production. Let’s talk about how you can get these learnings from your 
production model without risking a full outage or a degraded experience for all 
of your users.

You may want to ship your model to a subset of your users first to detect issues 
early and before all of your users catch a whiff of the issue. This technique is 
commonly referred to as a canary deployment.

As you gradually roll out your changes if a problem is detected via your ML 
monitoring systems, you should be able to easily and quickly revert back to a 
previous model version along with its corresponding software version.

Another topic that is closely related is the idea of shadow deployment. In a 
shadow deployment, you would start to feed the inputs that your existing model 
is seeing in production to your new model before you ship it. So while your 
users are still experiencing the predictions and user experience provided by the 
existing model, you can start to measure how your new model is performing and 
make any necessary changes to get it ready for prime-time.

One additional benefit of a shadow deployment is that you can perform 
experiments with multiple candidate models in a shadow deployment and 
choose the one that is able to perform best on your current production data.
Now that we have some techniques to help us improve the quality of our 
deployments, let’s talk about what you can do when you find an issue with your 
production model after you have deployed it into production.

Incident Response
Okay so we discovered an issue with our model in production, what should we 
do about it? This very much depends on your model application, but here we 
will talk about some general strategies about how to handle an issue in the short 
term (mitigation) and work towards the real fix (remediation).
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Mitigation
To start, just as with software, you may be able to roll back to a previous model 
version and corresponding software/configuration. This mitigation strategy 
might help you if you promoted a bad model that got past your validation 
procedures; however, this will not always solve your issue. It’s possible that your 
input data distribution or the underlying task of the model has changed, making 
the older model also a poor choice to have in production.

Another strategy that can work in some cases is to deploy a naive version of your 
model. This may generally have lower performance than your more complex 
model, but it may do better in the face of change in input and expected output 
distributions. The model doesn’t need to be machine-learned and can just be 
a simple heuristic-based model. This strategy may help you buy time while you 
rework your more complex, but more performant model.

Remediation
This brings us to the most common advice that is given to resolve an incident 
caused by an ML model in production: Just retrain it! This advice is common 
because it covers a lot of potential failure modes for a model. If the input data 
has shifted or the underlying task has changed, retraining on newer production 
data might be able to solve your issue. The world changes over time, and it’s 
possible your model needs to be regularly retrained to stay relevant.

Retraining strategies could encompass a whole other technical article, so let’s skip 
to the abridged version. You have some options when you retrain your model:

You can choose to upsample certain subsets of your data, potentially to fix issues 
regarding unintended bias or underperformance for a category of your data.

You also can sample the newer production data to build new training sets to 
use if you think that the shift in your input/output distributions is here to stay.

If you think that this shift in distributions is temporary and potentially seasonal, 
you can train a new version of your model on the data from this seasonal period 
and deploy it, or turn to engineering features to help your model understand this 
seasonal indicator in the function it is trying to approximate.

It’s possible that your model’s performance may have dipped due to the 
introduction of a new category of examples that it had not seen in it’s training. If 
this category of examples is sufficiently different you may need an entirely new 
model to handle these particular examples. The process of training a separate 
model and employing a higher-level model to determine which to use for a 
particular example is commonly referred to as a federation.



Machine Learning Observability 101  |  Page 45

Se
rv

ic
e

The last option is going back to the drawing board. If retraining hasn’t helped 
restore performance and your older models also fail to do the job, it’s possible 
that the task has changed significantly enough to require some of the following: 
a new model architecture, new features, and new data processing steps.

It took years for the software world to get behind the reliability framework 
outlined above. With the three pillars of observability, management of change, 
and incidence response, teams can translate the reliability gains from the world 
of software to the world of ML applications. It’s now up to the ML Ops space to 
provide the tools that we desperately need to make ML applications reliable.
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ML SERVICE-LEVEL PERFORMANCE MONITORING
  This section covers the often overlooked field of service-level ML performance in 
additional detail by breaking down how it can be measured and improved.

Let’s start off by breaking down what we mean by service-level performance of 
an ML system. In essence, there really are two important measurements that we 
are going to talk about: service performance and model performance. 

Service performance is the time it takes to load the model into memory, gather 
the requisite data, and compute the features the model needs to make its 
prediction. Service performance also includes the time it takes for the user to be 
made aware of the decision that the model has made.

Model performance is the time it takes for your model to make its prediction 
once it is fed its input. 

In a real-time system, both of these metrics contribute to the user-perceived 
latencies of your application, which can be the difference between a customer 
choosing to use your product or service over another. As a result, it’s important 
not just to monitor these service-level performance metrics, but also make real 
progress in reducing these latencies in your application.

Let’s start by taking a look at what you might want to monitor and improve upon 
to hone in on making your service more performant.
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Optimizing Performance of the Service 
Input Feature Lookup
Before the model can even make a prediction, all of the input features must 
be gathered or computed by the service layer of the ML system. Some of the 
features will be passed in by the caller, while other features might be collected 
from a datastore or calculated in real-time. 

For example, a model predicting the likelihood of a customer responding to 
an ad might take in the historical purchase information of this customer. The 
customer wouldn’t provide this when they view the page themselves, but the 
model service would query a data warehouse to fetch this information. Gathering 
input features can generally be classified into two groups: 

1. Static Features: Features that are less likely to change quickly and can be 
stored or calculated ahead of time. For example, a customer’s historical 
purchase patterns or preferences can be calculated ahead of time.  

2. Real-Time Calculated Features: Features that require being calculated over 
a dynamic time window. For example, when predicting ETAs (estimated time 
of arrival) for food delivery, you might need to know how many other orders 
have been made in the last hour. 

In practice, a model typically uses a mix of static and real-time calculated 
features. Monitoring the lookup and transformations needed for each feature 
is important to trace where the latency is coming from in the ML system. It’s 
important to remember that your service level performance in the input feature 
lookup stage is only as good as your slowest feature.

Pre-Computing Predictions
In some use cases, it is possible to reduce prediction latency by precomputing 
predictions, storing them, and serving them using a low-latency read datastore. 
For example, a streaming service might compute and store ahead of time the 
recommendations for a new user of their service. 

This type of offline batch-scoring job can vastly reduce latencies in the serving 
environment because the brunt of the work has been done before the model 
has even been called. 

For example, recommendation systems used by a streaming service like Netflix 
can pre-compute the movies or TV shows that you are likely to enjoy when you 
are not using the service so that the next time you login you are quickly greeted 
with some personalized content without the long loading screen.
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Optimizing Performance of the Model 
Reduce Complexity
Now that we have looked at service performance, let’s turn our attention to how 
you might monitor and improve your model performance.

One approach to optimize model prediction latency is to reduce the complexity 
of the model. Some examples of reducing complexity could be reducing the 
number of layers in a neural network, reducing levels in decision trees, or 
pruning any irrelevant or unused part of a model. 

In some cases, this might be a direct tradeoff to the model efficacy. For example, 
if there are more levels in a decision tree, there are more complex relationships 
that can be captured from the data and therefore increase the overall 
effectiveness of the model. However, fewer levels in a decision tree can reduce 
prediction latency. 

Balancing the efficacy of the model (accuracy, precision, AUC, etc.) with its 
required operational constraints is important to strive for any model to be 
deployed. This becomes especially relevant for models that are embedded on 
more constrained mobile devices. 

Parallelize
Aside from reducing the 
complexity of the model, 
something you can do 
to improve your model 
performance in production 
is to re-architect your model 
to be more parallelizable. If 
a part of your model doesn’t 
depend on the output of 
another part of your model, 
why not run both of these 
sections at the same time. 

The cloud-ML industry is 
moving to highly scalable on-demand clouds that allow you to leverage football 
fields of specialized computers to run your model on. In a similar vein, mobile 
processors are dedicating significant portions of their chips to machine learning 
accelerators, which allow developers to exploit the parallel nature of their model 
inference pipelines.
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If you have the ability to throw more cores at the problem at prediction time, you 
can leverage a parallel nature of your model to speed up your prediction time. 
You may be leaving performance on the table if you don’t look into how your 
model can be reimagined in a more parallel way.

Takeaway

While traditional ML performance monitoring is of the utmost importance 
for measuring and improving your application of machine learning, it doesn’t 
capture the full picture of how a user is experiencing your application. Service 
level performance metrics matter, and a change that increases your accuracy by 
one percent that causes a 500 millisecond regression might not be worth it for 
your use case! 

If you don’t see the trade-offs you are making with every change you make 
to your system, you are going to slowly bury your model in a pile of small 
performance regressions that add up to a slow, unwieldy product. Have no fear: 
there are a number of techniques to diagnose performance issues and ultimately 
improve your model’s service-level performance, but first you have to start 
paying attention to the milliseconds.



To learn more about Arize AI’s leading observability platform and 
use-cases specific to your industry, Request a Demo.

For the latest on ML observability best practices and tips, Sign up 
for our monthly newsletter The Drift.

Conclusion
While this ebook contains a wealth of best practices and resources, ultimately 
it’s teams that put these insights into practice. Hopefully by collaborating 
through a common platform, everyone who touches machine learning—from 
the data scientists who build models to the ML engineers who deploy them 
and even the executives overseeing efforts and ROI—can begin to develop a 
common culture and strategy around observability that moves beyond mere 
monitoring or compliance.

https://arize.com/request-a-demo/
https://arize.com/blog/#blog-subscribe-modal
http://www.arize.com
https://twitter.com/arizeai
https://medium.com/arize-ai

