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Introduction 
Effective model performance management requires more than “red 
light, green light” monitoring of key metrics. Machine learning (ML) 
teams across all industries and companies invest heavily in building, 
testing, and experimenting with ML models to carry out mission 
and operations-critical tasks for their business and customers —  yet 
according to a recent survey,  over 84% of data scientists and ML 
engineers say the time it takes to detect and diagnose problems with 
a model remains a pain point for their teams. 

Machine learning observability is a critical element for any modern 
ML infrastructure stack. The right model observability platform 
enables teams to not only detect when an issue emerges, but provides 
capabilities that allow for deeper and more proactive introspection to 
diagnose the root cause of problems before they significantly impact 
a business or its customers. Armed with the right solution, ML teams 
can quickly visualize where and why problems are emerging —  clicking 
into slices directly, without added burdens like writing queries.”

This checklist covers the essential elements to consider when 
evaluating an ML observability platform.

http://www.arize.com
https://arize.com/resource/survey-machine-learning-observability-results/
https://arize.com/the-only-3-ml-tools-you-need/
https://arize.com/the-only-3-ml-tools-you-need/
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S E C T I O N  0 1

Drift Monitoring & Troubleshooting

Overall production drift detection (concept, data, model) 

Production drift is a great proxy metric when performance metrics can’t be 
gleaned in real-time (or near-real-time) due to delayed actuals. Ideally, your 
solution allows for varying levels of drift detection, including:
• Concept drift: drift of the actuals. This covers drift of the ground 

truth from the past —  such as from a prior time window, or a training 
dataset —  to now. 

• Data drift: drift of the features or inputs, or covariate shift.

• Model drift: drift of the predictions. This covers differences between 
what the model is predicting today versus the past. Also known as prior 
probability shift or prediction drift.

Models are not static. They are highly dependent on the data they are 
trained on. Drift is a change in distribution over time and can be measured 
for model inputs, outputs, and actuals. Drift can occur because your 
models have grown stale, bad data is flowing into your model, or even 
because of adversarial inputs. Tracking drift in your models amounts to 
keeping tabs on what had changed between your reference distribution, 
like when you were training the model or from a prior time period, and 
your current production distribution. 

Drift Tracing

The hardest part of tracking down model drift is the ability to trace 
what features are causing the movement (drift) in the output of the 
model. Drift tracing allows teams to immediately trace the cause 
of prediction model drift to the feature causing that drift. Drift 
tracing combines both model drift analysis, feature drift, and feature 
importance scores into an impact score by feature, allowing teams to 
quickly sort and find the root cause of output prediction drift.

http://www.arize.com
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S E C T I O N  0 1

Automatic Thresholding on Drift

ML model monitors have a real challenge of being useful and 
minimizing noise since they need to be deployed on hundreds or 
thousands of features multiplied by every model deployed. The ability 
to automatically create and automatically update thresholds based 
on data changes is imperative to keeping monitors useful and noise 
minimized. Arize applies a controllable continuous auto-thresholding 
that enables stable, quiet and useful monitoring for ML drift metrics. 

Drift Metric Support & In-flight Application: 
PSI/JS Divergence/KS Metric/Embedding Drift

Many teams want the ability to set metrics on the fly, in product, 
without reconfiguring or re-uploading data. Teams need full support 
for in flight changes and support for any of the common drift metrics 
without having to update or rewrite ingestion code. 

Automatic Binning Support

Drift metrics are driven by the binning approach used by a platform’s 
data engine. The ability to automatically set binning approaches for 
drift analysis based on the type of data allows teams to automatically 
monitor features with no manual changes to binning required to 
monitor. This is critical to have monitors that actually give teams a red 
light when an issue actually occurs. 

Programmatic Support for Monitor Setup & 
Configuration

Teams increasingly want the ability to setup monitors as code and use the 
ability to configure their ML monitoring pipelines with APIs and code.

http://www.arize.com
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Drift on any flexible dataset

Your ML observability solution should enable drift monitoring against 
any baseline that you want to benchmark against. This includes 
training, validation, different versions of datasets, and earlier windows 
from production. 

Drift monitoring against different versions of datasets is helpful in 
understanding how your model responds when it encounters new 
or deviant inputs. And tracking against earlier production windows is 
especially relevant in time series or forecasting cases.

S E C T I O N  0 1

Compare training versus production distributions

Taking a model from research to production is hard, in part because 
how a model responds to inputs in a contained training environment 
won’t necessarily translate perfectly to the production environment 
where the data feeding your model tends to be more dynamic. 
Understanding when the overall distribution of your model’s outputs is 
shifting from what you expected when training is an important signal 
for tracking the efficacy of your models. 

Drift between training and production may indicate that retraining or 
updating the model is needed in order to address challenges such as 
concept drift or model sensitivity.

Troubleshooting Model Drift by Drilling Into Feature Drift 

Change in the inputs to a model is inevitable when dealing with an online 
production environment. While models can be resilient to minor changes 
in input distribution, when distributions stray further from what the model 
encountered in training the performance on the task at hand eventually 
suffers. However, drift isn’t a binary indication of model health;  just because 
a feature drifts doesn’t mean model performance will regress. Therefore, 
it’s important to have an ML observability solution that not only readily 
surfaces feature changes over time but can surface related metrics such as 
data quality metrics and performance metrics in the same view so you can 
better determine the potential impact of a drift.

http://www.arize.com
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S E C T I O N  0 1

Configure baseline setup

Again, teams need flexible ways to set up a baseline as a reference 
point for monitoring. An ML observability solution should be able to 
support baselines coming from training, validation and production.

Drift detection across any cohort

There are situations where a specific cohort is the primary focus of 
your model monitoring or troubleshooting, such as when expanding 
your forecasting models to new locations or inventory types.

In those instances, the ability to detect concept, data and model drift 
at the cohort level provides more tangible value to your analysis than 
looking at aggregate predictions.

http://www.arize.com
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S E C T I O N  0 2

Performance Monitoring & Troubleshooting

Monitor ground truth by combining predictions with 
delayed response label data 

In an ideal scenario, ground truth or actuals are surfaced in real-time (or 
near-real-time) for every prediction, allowing you to immediately analyze 
how your model is performing in production. While some industries are 
lucky enough to encounter this scenario —  with food delivery estimates, 
for example, you’ll know the accuracy of an ETA prediction once the meal 
is delivered to the customer —  the latency period for other use cases may 
be much longer. 

Your model monitoring solution should be able to support joining 
predictions with delayed actuals, regardless of the latency duration, so 
you can reference and analyze performance for any given time period.

Performance Tracing

One of the most time consuming jobs in data science is tracking down 
performance issues in production. The ability to go from a drop in 
aggregate performance to looking at the actual data inputs causing the 
problem is one of the most important product features required from 
an ML observability platform. Arize’s performance tracing product, for 
example, is powered by patented technology that enables the platform 
to analyze performance across millions of cohorts of data, sort up the 
data causing the biggest problems and highlight what needs to be 
fixed in seconds. The performance tracing technology also allows teams 
to quickly compare production to training to surface instantly what 
data values are new or performing poorly and what to send back to 
development teams.

Once an ML model is deployed into production, consistently monitoring 
performance metrics is a core element of maintaining overall model health. 
While monitoring is traditionally a reactive approach to model performance 
management, the best tools can help you proactively catch regressions 
before they impact your business or customers and even recognize when 
it’s time to retire or retrain. 

http://www.arize.com
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Ranking and Recommendation Model Support (NDCG, 
Recall @ K, Precision @ K, MAP @ K, and custom)

The ability to support ranking models requires a complex set of metrics 
and data formats. ML teams want to dynamically set K for analysis, apply 
different ranking metrics based on the model view and change as needed 
without reformatting data. Additionally, calculating ranking metrics at 
scale is extremely hard, Arize is designed for scaled ranking analysis. 

Custom Performance Metrics

Many teams need the ability to write custom performance metrics on their 
models. Arize supports custom metrics defined on scaled data ingested 
into the platform. The custom performance metrics are usable throughout 
the performance sections of the platform such as performance tracing, 
dashboards, and monitors.  

S E C T I O N  0 2

Performance by Sub-Model

Many models are designed to have a single model architecture with a sub-
model build approach, such as having a model built by city or by product 
line. In order to support this, you need flexibility to ingest easily, possibly 
with slight difference in actual input features, then in product have the 
ability to break out performance by sub-model (say by city). 

http://www.arize.com
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Configurable baselines that support both production 
and pre-production

At the most basic level of monitoring, you need the ability to select parts 
of your production data as the reference point to analyze performance 
to answer questions like: “Is my model’s accuracy as good this month as 
last month, or has it regressed?” Look for the flexibility to use fixed (i.e. 
previous month) or moving (i.e. trailing 30 days) time ranges. 

The ability to set validation or training datasets as the reference point for 
monitoring also helps you troubleshoot regressions or issues that emerge 
in production. For example, if you’re seeing more predictions of positive 
class “fraud” in production than when training the model, you would 
want to detect this quickly to diagnose the root cause —  whether it’s an 
uptick in actual fraud or an issue with model sensitivity.

S E C T I O N  0 2

Production A|B comparison of models

Even if you employ an experimentation platform during the model building 
and testing phases, the ability to see how different versions perform in the 
real world is the ultimate evaluation of the efficacy of your optimizations 
and retraining efforts. This is especially advantageous with shadow or 
canary deploys, where you are gauging performance of a model version on 
a subset of production data before full deployment.

Your ML observability solution should enable easy, intuitive views (read: 
purpose-built, side-by-side analysis in the same window) of how each 
version is performing. And because new model versions often emerge 
to service a new need or improvement —  such as expanding a delivery 
service to new neighborhoods — the ability to compare performance 
against specific cohorts of predictions and features will help yield more 
fruitful analysis.

http://www.arize.com
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Automatically surface up performance problems by 
feature, value or cohort without a user needing to 
write SQL queries

A good observability solution should help surface up the unknown-
unknowns, identifying the exact inputs or slices that are causing the 
performance to drop. Ultimately, you want to find problems quickly and 
directly —  not to spend time digging into SQL to find the issues. 

Your ML observability platform should also help you create default 
monitors in bulk without needing to manually configure each one with 
the right performance metrics and thresholds based. The monitors 
should also offer tracking at the prediction, feature, and cohort (subset of 
dimensions) levels to provide depth of coverage against model health.

S E C T I O N  0 2

Monitor production models using constant thresholds 
and dynamic thresholds

In some instances, you may want to simply detect whether a performance 
metric exceeds or dips below a constant value —  e.g. accuracy below 90%. 
Other times, it’s more relevant to monitor performance from a rolling 
baseline, such as if accuracy is +/- 2 standard deviations from the previous 
72 hour window.

Ability to compare model performance metrics (such as 
ROC-AUC, PR-AUC, accuracy, precision, recall, r-squared, 
MSE, MAE) from trained model to production model (or 
two other periods of time) 

This helps with more granular troubleshooting when an issue is detected.

http://www.arize.com
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S E C T I O N  0 2

Dashboards that non-technical stakeholders can 
understand

Once ML models are being relied on and tracked by the business to 
measure things like product health or customer outcomes, an ML 
observability solution should help you provide easily-interpretable, 
non-technical health metrics that any stakeholder can check to 
determine if models have changed in a meaningful manner.

Ability to perform dynamic cohort analysis/
segmentation of predictions 

Look for interactive functionality to select the cohorts you want to 
analyze on the fly by grouping features, predictions or actuals into 
facets or slices for analysis. All performance or data for product 
metrics should roll up based on the slices you want to analyze 
without requiring pre-established segments.

http://www.arize.com


|  The Definitive ML Observability Checklist  |  Page 11 ↑  Table of contents

Embeddings (Unstructured LLMs/CV/NLP)
According to multiple estimates, 80% of data generated is unstructured audio, 
images, text, or video. As computer vision (CV) and natural language processing 
(NLP) models proliferate, ML teams need to stay a step ahead of new patterns 
in this data causing model performance degradation in production. 

S E C T I O N  0 3

Embedding Drift Monitoring for Generative, NLP, CV

The challenge with measuring data drift in deep learning models (CV, 
NLP, LLMs, Unstructured) is that you need to understand the change in 
relationships inside the unstructured data itself. These models are extremely 
hard to troubleshoot and understand how to improve performance. One 
paradigm shift is to leverage embeddings to analyze deep learning models. 
Embeddings are everywhere in modern deep learning and by detecting 
movement in the embeddings. Arize’s patent pending approach, for 
example, is to track drift between embeddings to highlight issues quickly 
and surface the root cause of the problem in the data. 

Automatically Cluster Data for Anomaly Detection

Troubleshooting embeddings is incredibly hard. Teams require the ability 
to find groups of problems as clusters, and analyze those clusters relative 
to performance metrics or drift. The ability to automatically find clusters of 
problems and integrate workflows for fixing the data is required by any team 
using complex models. 

2-D and 3-D Embeddings Projector

Visualizing your data in a low dimensional space is critical to the process 
of finding the root cause of problems and analyzing them. Projecting 
embeddings to 2-D or 3-D space is imperative to understand the groups 
of data that might be causing issues, selecting them, filtering them and 
exporting them. 

http://www.arize.com
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S E C T I O N  0 3

Sort Problematic Clusters by Performance Metrics

The ability to sort clusters of problems by performance metrics is critical to 
understanding what groups of clusters are causing problems and sorting what 
teams should look at first. 

Interactively View Data, Select Data, Colorize Data  
and Export

The ability to interactively view data, select data, and colorize by performance/
features allows teams to work through interactive root cause workflows. Once 
you find the group of data causing the issue you can export or save the cluster 
of data for use in monitoring or fine tuning flows.

Auto-Embeddings Generation

In many cases teams do not have access to the internal embeddings within 
the model itself in production use cases. The platform should have auto-
embedding generation for automatically generating embeddings for use 
within embedding workflows. 

http://www.arize.com
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S E C T I O N  0 3

UMAP visualization to better troubleshoot CV and  
NLP models

Once drift is identified, you need to click a level deeper to visualize what may be 
happening with the data in order to troubleshoot. By visualizing embeddings 
on a UMAP plot with production embeddings overlaid over training 
embeddings, you can identify new patterns in production not seen in training. 

Identify and export what what data to label next
What works in training may not work in production when identifying 
what to label next. By identifying new patterns to focus on for labeling 
and retraining, teams can save significant overhead. 

http://www.arize.com
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LLM Observability 

S E C T I O N  0 4

Monitor GPT-4/Anthropic/General LLMs

The latest explosion in LLM growth has caused a large set of GPT-4 use 
cases to be pushed into production with little visibility in outcomes and no 
ability to root cause problems in production. An ML Observability solution 
should support the modern foundational model prompt and response pairs 
collecting data on use, problems, and interactions. 

Performance Evaluation of Prompt and Response Pairs

The ability to understand how each task for each prompt template is 
performing and where it is not working is critical to supporting production use 
cases. Supporting evaluation metrics from OpenAI Evals that are integrated 
into the SDK and supporting analysis methods that break these down by 
prompt template is important to managing production use cases.

Cluster Prompt and Response Pairs

The ability to cluster groups of prompts and responses that are problematic is 
one of the main approaches to troubleshooting production issues. Once you 
find problematic groups, teams can either fix using prompt engineering or fix 
using fine tuning datasets built from similar samples.

Prompt Engineering Workflows

The ability to iterate on a prompt quickly once you have found a problem in a 
template is critical. Sometimes the best way to fix a prompt is to ask an LLM for a 
recommendation. The ability to call back to an LLM for insights, iterate in product 
on the problem data and suggest a prompt fix is critical to the workflow. 

http://www.arize.com
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S E C T I O N  0 4

Monitor Token Usage and Delays

The simple stuff is sometimes most important. The ability to break out usage 
by tokens and API delays is important to track ad monitor. The ability to add 
custom metrics on top of the counts is important to teams tracking actual 
costs. The ability to use tags to segment out tasks and usage patterns is 
important for tracking.

Fine Tuning Workflows

The fine tuning approach is key to improving long term model 
performance, and the key to fine tuning is collecting the right data. As 
teams discover problem clusters, saving those clusters then applying them 
to export the right fine tuning datasets is a pivotal part of the workflow 
needed to improve the core datasets. 

http://www.arize.com
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S E C T I O N  0 5

Explainability

Ability to view the feature importance for the  
top n features 

Embeddings –  vector (mathematical) representations of data where linear 
distances capture structure in the original datasets – are everywhere in 
modern deep learning, from deep neural networks to transformers. By 
monitoring embeddings of their unstructured data, teams can proactively 
identify when their unstructured data is drifting in and improve their CV 
and NLP models in production. 

Since the metrics typically used for drift in structured data – such as 
Kullback-Leibler divergence (KL divergence) – only allow for statistical 
analysis on structured labels and do not extend to unstructured data, an 
ML observability solution needs to support a metric that is proven to be 
sensitive and stable like Euclidean distance to quantify embedding drift. 

Explainability isn’t a leading indicator of model performance and 
therefore shouldn’t be the primary functionality you evaluate when 
selecting an ML observability solution. However, model explainability 
can be a useful tool when performing deeper root cause analysis after 
identifying an issue, or exploring ways to improve a model to deliver 
better outcomes in future iterations. The ability to introspect and 
understand why a model made a particular prediction is also important 
for AI ethics and broader organizational concerns.

http://www.arize.com
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There are several levels of explainability to consider, 
each with potential to assist in various stages of model 
training, validation, and production
• Global explainability: Model explainability across all predictions, 

attributing which features contributed the most to the model’s 
decisions. Global explainability is useful to convey how a model makes 
decisions on average and can help you detect problematic logic before 
a model ships into production.

• Cohort explainability: Model explainability for a particular subset of 
data, also known as a cohort. Cohort explainability is useful when 
attempting to convey why a model isn’t performing as well for a set 
of inputs and in discovering model bias. This is particularly useful 
in validation, when you’re testing your model’s ability to generalize 
performance across your dataset.

• Local explainability: Model explainability for an individual prediction. 
This level of explainability conveys why, for a specific example, did 
the model make that particular decision. Local explainability is 
indispensable for root causing a particular issue in production —  for 
example, to answer customer support questions.

S E C T I O N  0 5

http://www.arize.com
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S E C T I O N  0 6

Business Impact Analysis
Business metrics go hand in hand with model performance metrics 
and —  when properly defined —  they should be linked. At the end of the 
day, you aren’t shipping a F1 score to your customers, so it’s important to 
keep in touch with how your models are affecting how each customer is 
experiencing your product.

Since these metrics are not easy for a model to optimize for, the 
optimization problem will be set up using a parallel metric.

Custom user defined function (UDF) to tie model 
performance back to business metrics

The cost of model mistakes to a business and its consumers generally 
aren’t equal. With credit card transactions, for example, a false positive 
for fraud typically just means a minor inconvenience to the customer 
who might need to verify over email/text that a transaction was 
legitimate —  whereas a false negative is an immediate financial loss for 
the credit card provider.

Look for an ML observability solution that doesn’t simply flag when there’s 
a potential performance issue, but enables you to analyze the potential 
risk to the business. This can be in the form of UDF or formulas that tie 
true positive, false negative, false positive, true negative thresholds back 
to your target business metrics.

Dynamically analyze thresholds for probability-
based decision models 

Once you’ve defined your business metrics, you’ll want the ability 
to analyze the thresholds in which your probability-based decision 
models are able to operate before regressions have a meaningful 
impact on your business goals. If a model can drift 10% before any 
measurable impact is seen, for example, you can configure your 
monitors accordingly.

http://www.arize.com
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Compare pre-production models to current 
production models —  champion and challenger

This is especially useful when approximating the business risk or 
incremental performance lift of deploying a new model or model 
version into production.

S E C T I O N  0 6

http://www.arize.com
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Model versioning and lineage support

The following can be helpful in comparative analysis:
• Ability to send predictions for different versions of the model.

• Ability to determine which model versions belong to the same model.

• Ability to compare performance of two different model versions and 
automatically surface which model is better-performing and why.

• Ability to set up customizable multi-model analytics for different model 
versions and models on the same dashboard.

S E C T I O N  0 7

Model Lineage, Validation & Comparison

Pre-Launch model validation

To avoid situations where ML teams are shipping models into 
production “blind,” it’s highly recommended that any model 
observability solution you employ provides a number of pre-launch 
validation capabilities, including:
• Ability to track training datasets and product predictions data 

across model versions.

• Ability to track multiple validation datasets as “batches.”

• Ability to set up customizable dashboards analyzing pre-
production datasets.

• Ability to compare business impact of a new not-launched model 
versus production-deployed model.

Think of these like CI/CD checks for ML models. The more readily 
you are able to map changes in model version, datasets used, and 
expected results, the better able you are to focus your monitoring 
and troubleshooting efforts.

http://www.arize.com
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S E C T I O N  0 8

Data Quality Monitoring & Troubleshooting

Monitor production model for bad inputs

The ability to triangulate whether the production issues you are 
encountering are due to a faulty model or a problem with the data source 
is fundamental to guiding your troubleshooting and remediation efforts.  

Because the relationship between the data feeding a model and its 
outcomes are inextricably linked, look for ML observability solutions 
that can help you monitor and troubleshoot both inputs and outputs. 
Data quality monitoring should include: data schema change, data 
malformation, new ground truth class, bad/missing values in columns 
expected to be clean, among others.

A model is often only as good as the data it is trained on. Data quality 
doesn’t stop being important after the model is trained, but continues 
to remain important as the model is deployed in production. The quality 
of the model’s predictions is highly dependent on the quality of the data 
sources powering the model’s features.

Configurable real-time statistics on features & 
predictions (min, max, median, mean, standard 
deviation) in aggregate and by cohorts

Think of this as your first line of defense against performance 
regressions. Minor fluctuations in data will not likely result in drastic 
model behavior or indicate a point of concern, but seeing feature 
values that are, for example, two standard deviations from what you’d 
generally expect is probably a red flag. 

Because you are best equipped to understand the parameters in 
which your model was meant to thrive and its limitations, look for ML 
observability solutions that offer pre-set as well as fully configurable 
thresholds for data quality monitoring.

http://www.arize.com
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Ability to detect anomalous behavior (outlier 
detection) on predictions

When the cost of model mistakes are high, as is often the case in 
industries such as healthcare or insurance, the ability to flag extreme or 
out-of-place behavior is incredibly important. 

A handful of outliers may simply warrant human intervention to review 
the model decision, whereas a large or increasing number of outliers 
could indicate a problem with the model or data source itself.

Configurable baseline setup

Flexible ways to set up a baseline are also important in data quality 
monitoring. Baselines can come from training, validation, and 
production. An ML observability platform’s inference store should 
have a history of data to reference from training sets or historical 
production data to set intelligent baselines and thresholds to balance 
the frequency of alerts and give power back to ML teams to ensure 
high-performing models in production.

S E C T I O N  0 8

http://www.arize.com
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S E C T I O N  9

Integration Functionality

Agnostic of model types/libraries

Your ML observability solution should connect seamlessly into your existing 
ML stack and model building framework, not the other way around. 

Support SaaS, on-prem and hybrid deployments 

While SaaS comes with many benefits of dynamic scale and reduced 
operational overhead, there are simply instances where a project, 
team, line of business, or entire organization needs to operate in 
a private installation. Look for vendors that are able to reasonably 
accommodate these needs now and in the future.

Specializes in model monitoring and observability 
instead of providing an end-to-end hosting and 
serving system

Machine learning systems and models are incredibly complex and 
require substantial investments in resources from a financial and 
talent perspective. We highly encourage ML teams to look for purpose-
built solutions designed with this complexity and domain expertise in 
mind for a variety of reasons, namely:
• Depth of use cases supported:  solutions that are built for a 

particular purpose (i.e. production observability) often provide more 
comprehensive value for that specific area.

• Flexibility to customize your own stack:  connect the best solutions 
across your ML lifecycle rather than settling for what’s “included in 
the box.”

• Maintain autonomy in choice and control:  it’s easy to get locked 
into building your stack around the pricing models of end-to-end 
hosting and serving platforms. Instead, consider the specific value 
being extracted from the tools and their limitations —  just because 
something is there doesn’t mean it’s worth using.

http://www.arize.com
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Ability to set up alerts that integrate with PagerDuty 
or your preferred incident response platform

As mentioned, the ease of connecting into your existing ML stack and 
systems is paramount.

Automatically infers the model type and calculates 
the appropriate metrics for monitoring

When you’re dealing with hundreds or thousands of models, 
efficiency of automation is key to scaling production monitoring and 
observability. Look for platforms that can automatically detect the 
schema of models and data being sent through to save yourself set-up 
time in the future.

Ability to easily import data from and export to 
external data sources

Your observability solution shouldn’t impede the flow of data across 
your systems or workflows. Look for solutions that allow you not only to 
easily import data, but extract easy-to-interpret insights to share out to 
stakeholders (in the form of custom dashboards or otherwise) and in 
rawer formers such as a Jupyter notebook that can be shared back to 
the data science or model-building team.
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UI / UX Experience
While function is paramount for your ML observability solution, form 
shouldn’t have to be a tradeoff! 

Flexible, customizable dashboards that technical 
and non-technical stakeholders can check to 
determine if models have changed

Your analysis is only as useful as your ability to easily convey the 
findings across your team and business. The ideal ML observability 
solution should complement your efforts with the ability to present 
rich, interpretable insights that are useful to any type of stakeholder 
you work with. Look for:
• Fully customizable dashboards.

• Ease of sharing (links that save filters, PDF export, etc).

• Intuitive data visualizations via heatmaps, charts, and other  
at-a-glance formats.

Dark mode (optional)

Monitoring and troubleshooting models is hard work, but it doesn’t 
need to be hard on your eyes, too.

http://www.arize.com
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Scalability To Meet Current and 
Future Analytics Complexity
A platform’s architecture matters, particularly when supporting 
enterprise scale; without it, ML teams might be delayed or lose insights 
at the worst possible time.

Ability to handle analytic workloads

Knowing where a platform is using online transaction processing (OLTP) 
versus online analytics processing (OLAP) is important since each is 
optimized for different workloads. Ideally, the analytic data from which 
numeric reports are built should be housed in an OLAP, columnar system 
(i.e. Druid). OLTP or row-based engines will often fail at analytic workloads 
once the quantity of datapoints in each query becomes large since these 
systems are not optimized for fast scans of millions to billions of rows 
and are generally not able to support interactive queries (i.e. subsecond 
latencies). It’s also important to be able to scale out that workload beyond 
a single server instance —  generally, you need something that can expand 
query semantics to terabytes or petabytes of data.

Ability to support load testing

As the old proverb says: trust, but verify. In addition to asking for a 
reference customer, a load test can be helpful in proving ability to 
handle current analytics complexity. A few example parameters:
• Test > 500 features.

• Test > 50M predictions a day with a total of over 500M to 1B predictions 
in total over a testing period (10+ days or more).

To kickstart your ML observability journey today, sign up for a free Arize account, 
book a demo, or join the Arize community.

http://www.arize.com
http://www.arize.com
https://twitter.com/arizeai
https://aparnadhinak.medium.com/
https://arize.com/request-a-demo/
https://arize.com/sign-up/
https://arize.com/community/



