
| The Definitive ML Observability Checklist | Page 1 ↑ Table of contents

Machine Learning
Observability Checklist

THE DEFINITIVE

What to Look for When Assessing ML Monitoring
& Observability Platforms

New Edition

http://www.arize.com

| The Definitive ML Observability Checklist

What to look for when assessing ML monitoring observability platforms

Drift Monitoring & Troubleshooting ...2

Performance Monitoring & Troubleshooting ... 6

Embeddings (Unstructured LLMs/CV/NLP) ..11

LLM Observability ...14

Explainability ... 16

Business Impact Analysis ...18

Model Lineage, Validation & Comparison ..20

Data Quality Monitoring & Troubleshooting ...21

Integration Functionality ... 23

UI / UX Experience ... 25

Scalability To Meet Current and Future Analytics Complexity26

Table of contents

http://www.arize.com

| The Definitive ML Observability Checklist | Page 1 ↑ Table of contents

Introduction
Effective model performance management requires more than “red
light, green light” monitoring of key metrics. Machine learning (ML)
teams across all industries and companies invest heavily in building,
testing, and experimenting with ML models to carry out mission
and operations-critical tasks for their business and customers —  yet
according to a recent survey, over 84% of data scientists and ML
engineers say the time it takes to detect and diagnose problems with
a model remains a pain point for their teams.

Machine learning observability is a critical element for any modern
ML infrastructure stack. The right model observability platform
enables teams to not only detect when an issue emerges, but provides
capabilities that allow for deeper and more proactive introspection to
diagnose the root cause of problems before they significantly impact
a business or its customers. Armed with the right solution, ML teams
can quickly visualize where and why problems are emerging —  clicking
into slices directly, without added burdens like writing queries.”

This checklist covers the essential elements to consider when
evaluating an ML observability platform.

http://www.arize.com
https://arize.com/resource/survey-machine-learning-observability-results/
https://arize.com/the-only-3-ml-tools-you-need/
https://arize.com/the-only-3-ml-tools-you-need/

| The Definitive ML Observability Checklist | Page 2 ↑ Table of contents

S E C T I O N 0 1

Drift Monitoring & Troubleshooting

Overall production drift detection (concept, data, model)

Production drift is a great proxy metric when performance metrics can’t be
gleaned in real-time (or near-real-time) due to delayed actuals. Ideally, your
solution allows for varying levels of drift detection, including:
• Concept drift: drift of the actuals. This covers drift of the ground

truth from the past —  such as from a prior time window, or a training
dataset —  to now.

• Data drift: drift of the features or inputs, or covariate shift.

• Model drift: drift of the predictions. This covers differences between
what the model is predicting today versus the past. Also known as prior
probability shift or prediction drift.

Models are not static. They are highly dependent on the data they are
trained on. Drift is a change in distribution over time and can be measured
for model inputs, outputs, and actuals. Drift can occur because your
models have grown stale, bad data is flowing into your model, or even
because of adversarial inputs. Tracking drift in your models amounts to
keeping tabs on what had changed between your reference distribution,
like when you were training the model or from a prior time period, and
your current production distribution.

Drift Tracing

The hardest part of tracking down model drift is the ability to trace
what features are causing the movement (drift) in the output of the
model. Drift tracing allows teams to immediately trace the cause
of prediction model drift to the feature causing that drift. Drift
tracing combines both model drift analysis, feature drift, and feature
importance scores into an impact score by feature, allowing teams to
quickly sort and find the root cause of output prediction drift.

http://www.arize.com

| The Definitive ML Observability Checklist | Page 3 ↑ Table of contents

S E C T I O N 0 1

Automatic Thresholding on Drift

ML model monitors have a real challenge of being useful and
minimizing noise since they need to be deployed on hundreds or
thousands of features multiplied by every model deployed. The ability
to automatically create and automatically update thresholds based
on data changes is imperative to keeping monitors useful and noise
minimized. Arize applies a controllable continuous auto-thresholding
that enables stable, quiet and useful monitoring for ML drift metrics.

Drift Metric Support & In-flight Application:
PSI/JS Divergence/KS Metric/Embedding Drift

Many teams want the ability to set metrics on the fly, in product,
without reconfiguring or re-uploading data. Teams need full support
for in flight changes and support for any of the common drift metrics
without having to update or rewrite ingestion code.

Automatic Binning Support

Drift metrics are driven by the binning approach used by a platform’s
data engine. The ability to automatically set binning approaches for
drift analysis based on the type of data allows teams to automatically
monitor features with no manual changes to binning required to
monitor. This is critical to have monitors that actually give teams a red
light when an issue actually occurs.

Programmatic Support for Monitor Setup &
Configuration

Teams increasingly want the ability to setup monitors as code and use the
ability to configure their ML monitoring pipelines with APIs and code.

http://www.arize.com

| The Definitive ML Observability Checklist | Page 4 ↑ Table of contents

Drift on any flexible dataset

Your ML observability solution should enable drift monitoring against
any baseline that you want to benchmark against. This includes
training, validation, different versions of datasets, and earlier windows
from production.

Drift monitoring against different versions of datasets is helpful in
understanding how your model responds when it encounters new
or deviant inputs. And tracking against earlier production windows is
especially relevant in time series or forecasting cases.

S E C T I O N 0 1

Compare training versus production distributions

Taking a model from research to production is hard, in part because
how a model responds to inputs in a contained training environment
won’t necessarily translate perfectly to the production environment
where the data feeding your model tends to be more dynamic.
Understanding when the overall distribution of your model’s outputs is
shifting from what you expected when training is an important signal
for tracking the efficacy of your models.

Drift between training and production may indicate that retraining or
updating the model is needed in order to address challenges such as
concept drift or model sensitivity.

Troubleshooting Model Drift by Drilling Into Feature Drift

Change in the inputs to a model is inevitable when dealing with an online
production environment. While models can be resilient to minor changes
in input distribution, when distributions stray further from what the model
encountered in training the performance on the task at hand eventually
suffers. However, drift isn’t a binary indication of model health;  just because
a feature drifts doesn’t mean model performance will regress. Therefore,
it’s important to have an ML observability solution that not only readily
surfaces feature changes over time but can surface related metrics such as
data quality metrics and performance metrics in the same view so you can
better determine the potential impact of a drift.

http://www.arize.com

| The Definitive ML Observability Checklist | Page 5 ↑ Table of contents

S E C T I O N 0 1

Configure baseline setup

Again, teams need flexible ways to set up a baseline as a reference
point for monitoring. An ML observability solution should be able to
support baselines coming from training, validation and production.

Drift detection across any cohort

There are situations where a specific cohort is the primary focus of
your model monitoring or troubleshooting, such as when expanding
your forecasting models to new locations or inventory types.

In those instances, the ability to detect concept, data and model drift
at the cohort level provides more tangible value to your analysis than
looking at aggregate predictions.

http://www.arize.com

| The Definitive ML Observability Checklist | Page 6 ↑ Table of contents

S E C T I O N 0 2

Performance Monitoring & Troubleshooting

Monitor ground truth by combining predictions with
delayed response label data

In an ideal scenario, ground truth or actuals are surfaced in real-time (or
near-real-time) for every prediction, allowing you to immediately analyze
how your model is performing in production. While some industries are
lucky enough to encounter this scenario —  with food delivery estimates,
for example, you’ll know the accuracy of an ETA prediction once the meal
is delivered to the customer —  the latency period for other use cases may
be much longer.

Your model monitoring solution should be able to support joining
predictions with delayed actuals, regardless of the latency duration, so
you can reference and analyze performance for any given time period.

Performance Tracing

One of the most time consuming jobs in data science is tracking down
performance issues in production. The ability to go from a drop in
aggregate performance to looking at the actual data inputs causing the
problem is one of the most important product features required from
an ML observability platform. Arize’s performance tracing product, for
example, is powered by patented technology that enables the platform
to analyze performance across millions of cohorts of data, sort up the
data causing the biggest problems and highlight what needs to be
fixed in seconds. The performance tracing technology also allows teams
to quickly compare production to training to surface instantly what
data values are new or performing poorly and what to send back to
development teams.

Once an ML model is deployed into production, consistently monitoring
performance metrics is a core element of maintaining overall model health.
While monitoring is traditionally a reactive approach to model performance
management, the best tools can help you proactively catch regressions
before they impact your business or customers and even recognize when
it’s time to retire or retrain.

http://www.arize.com

| The Definitive ML Observability Checklist | Page 7 ↑ Table of contents

Ranking and Recommendation Model Support (NDCG,
Recall @ K, Precision @ K, MAP @ K, and custom)

The ability to support ranking models requires a complex set of metrics
and data formats. ML teams want to dynamically set K for analysis, apply
different ranking metrics based on the model view and change as needed
without reformatting data. Additionally, calculating ranking metrics at
scale is extremely hard, Arize is designed for scaled ranking analysis.

Custom Performance Metrics

Many teams need the ability to write custom performance metrics on their
models. Arize supports custom metrics defined on scaled data ingested
into the platform. The custom performance metrics are usable throughout
the performance sections of the platform such as performance tracing,
dashboards, and monitors.

S E C T I O N 0 2

Performance by Sub-Model

Many models are designed to have a single model architecture with a sub-
model build approach, such as having a model built by city or by product
line. In order to support this, you need flexibility to ingest easily, possibly
with slight difference in actual input features, then in product have the
ability to break out performance by sub-model (say by city).

http://www.arize.com

| The Definitive ML Observability Checklist | Page 8 ↑ Table of contents

Configurable baselines that support both production
and pre-production

At the most basic level of monitoring, you need the ability to select parts
of your production data as the reference point to analyze performance
to answer questions like: “Is my model’s accuracy as good this month as
last month, or has it regressed?” Look for the flexibility to use fixed (i.e.
previous month) or moving (i.e. trailing 30 days) time ranges.

The ability to set validation or training datasets as the reference point for
monitoring also helps you troubleshoot regressions or issues that emerge
in production. For example, if you’re seeing more predictions of positive
class “fraud” in production than when training the model, you would
want to detect this quickly to diagnose the root cause —  whether it’s an
uptick in actual fraud or an issue with model sensitivity.

S E C T I O N 0 2

Production A|B comparison of models

Even if you employ an experimentation platform during the model building
and testing phases, the ability to see how different versions perform in the
real world is the ultimate evaluation of the efficacy of your optimizations
and retraining efforts. This is especially advantageous with shadow or
canary deploys, where you are gauging performance of a model version on
a subset of production data before full deployment.

Your ML observability solution should enable easy, intuitive views (read:
purpose-built, side-by-side analysis in the same window) of how each
version is performing. And because new model versions often emerge
to service a new need or improvement —  such as expanding a delivery
service to new neighborhoods — the ability to compare performance
against specific cohorts of predictions and features will help yield more
fruitful analysis.

http://www.arize.com

| The Definitive ML Observability Checklist | Page 9 ↑ Table of contents

Automatically surface up performance problems by
feature, value or cohort without a user needing to
write SQL queries

A good observability solution should help surface up the unknown-
unknowns, identifying the exact inputs or slices that are causing the
performance to drop. Ultimately, you want to find problems quickly and
directly —  not to spend time digging into SQL to find the issues.

Your ML observability platform should also help you create default
monitors in bulk without needing to manually configure each one with
the right performance metrics and thresholds based. The monitors
should also offer tracking at the prediction, feature, and cohort (subset of
dimensions) levels to provide depth of coverage against model health.

S E C T I O N 0 2

Monitor production models using constant thresholds
and dynamic thresholds

In some instances, you may want to simply detect whether a performance
metric exceeds or dips below a constant value —  e.g. accuracy below 90%.
Other times, it’s more relevant to monitor performance from a rolling
baseline, such as if accuracy is +/- 2 standard deviations from the previous
72 hour window.

Ability to compare model performance metrics (such as
ROC-AUC, PR-AUC, accuracy, precision, recall, r-squared,
MSE, MAE) from trained model to production model (or
two other periods of time)

This helps with more granular troubleshooting when an issue is detected.

http://www.arize.com

| The Definitive ML Observability Checklist | Page 10 ↑ Table of contents

S E C T I O N 0 2

Dashboards that non-technical stakeholders can
understand

Once ML models are being relied on and tracked by the business to
measure things like product health or customer outcomes, an ML
observability solution should help you provide easily-interpretable,
non-technical health metrics that any stakeholder can check to
determine if models have changed in a meaningful manner.

Ability to perform dynamic cohort analysis/
segmentation of predictions

Look for interactive functionality to select the cohorts you want to
analyze on the fly by grouping features, predictions or actuals into
facets or slices for analysis. All performance or data for product
metrics should roll up based on the slices you want to analyze
without requiring pre-established segments.

http://www.arize.com

| The Definitive ML Observability Checklist | Page 11 ↑ Table of contents

Embeddings (Unstructured LLMs/CV/NLP)
According to multiple estimates, 80% of data generated is unstructured audio,
images, text, or video. As computer vision (CV) and natural language processing
(NLP) models proliferate, ML teams need to stay a step ahead of new patterns
in this data causing model performance degradation in production.

S E C T I O N 0 3

Embedding Drift Monitoring for Generative, NLP, CV

The challenge with measuring data drift in deep learning models (CV,
NLP, LLMs, Unstructured) is that you need to understand the change in
relationships inside the unstructured data itself. These models are extremely
hard to troubleshoot and understand how to improve performance. One
paradigm shift is to leverage embeddings to analyze deep learning models.
Embeddings are everywhere in modern deep learning and by detecting
movement in the embeddings. Arize’s patent pending approach, for
example, is to track drift between embeddings to highlight issues quickly
and surface the root cause of the problem in the data.

Automatically Cluster Data for Anomaly Detection

Troubleshooting embeddings is incredibly hard. Teams require the ability
to find groups of problems as clusters, and analyze those clusters relative
to performance metrics or drift. The ability to automatically find clusters of
problems and integrate workflows for fixing the data is required by any team
using complex models.

2-D and 3-D Embeddings Projector

Visualizing your data in a low dimensional space is critical to the process
of finding the root cause of problems and analyzing them. Projecting
embeddings to 2-D or 3-D space is imperative to understand the groups
of data that might be causing issues, selecting them, filtering them and
exporting them.

http://www.arize.com

| The Definitive ML Observability Checklist | Page 12 ↑ Table of contents

S E C T I O N 0 3

Sort Problematic Clusters by Performance Metrics

The ability to sort clusters of problems by performance metrics is critical to
understanding what groups of clusters are causing problems and sorting what
teams should look at first.

Interactively View Data, Select Data, Colorize Data
and Export

The ability to interactively view data, select data, and colorize by performance/
features allows teams to work through interactive root cause workflows. Once
you find the group of data causing the issue you can export or save the cluster
of data for use in monitoring or fine tuning flows.

Auto-Embeddings Generation

In many cases teams do not have access to the internal embeddings within
the model itself in production use cases. The platform should have auto-
embedding generation for automatically generating embeddings for use
within embedding workflows.

http://www.arize.com

| The Definitive ML Observability Checklist | Page 13 ↑ Table of contents

S E C T I O N 0 3

UMAP visualization to better troubleshoot CV and
NLP models

Once drift is identified, you need to click a level deeper to visualize what may be
happening with the data in order to troubleshoot. By visualizing embeddings
on a UMAP plot with production embeddings overlaid over training
embeddings, you can identify new patterns in production not seen in training.

Identify and export what what data to label next
What works in training may not work in production when identifying
what to label next. By identifying new patterns to focus on for labeling
and retraining, teams can save significant overhead.

http://www.arize.com

| The Definitive ML Observability Checklist | Page 14 ↑ Table of contents

LLM Observability

S E C T I O N 0 4

Monitor GPT-4/Anthropic/General LLMs

The latest explosion in LLM growth has caused a large set of GPT-4 use
cases to be pushed into production with little visibility in outcomes and no
ability to root cause problems in production. An ML Observability solution
should support the modern foundational model prompt and response pairs
collecting data on use, problems, and interactions.

Performance Evaluation of Prompt and Response Pairs

The ability to understand how each task for each prompt template is
performing and where it is not working is critical to supporting production use
cases. Supporting evaluation metrics from OpenAI Evals that are integrated
into the SDK and supporting analysis methods that break these down by
prompt template is important to managing production use cases.

Cluster Prompt and Response Pairs

The ability to cluster groups of prompts and responses that are problematic is
one of the main approaches to troubleshooting production issues. Once you
find problematic groups, teams can either fix using prompt engineering or fix
using fine tuning datasets built from similar samples.

Prompt Engineering Workflows

The ability to iterate on a prompt quickly once you have found a problem in a
template is critical. Sometimes the best way to fix a prompt is to ask an LLM for a
recommendation. The ability to call back to an LLM for insights, iterate in product
on the problem data and suggest a prompt fix is critical to the workflow.

http://www.arize.com

| The Definitive ML Observability Checklist | Page 15 ↑ Table of contents

S E C T I O N 0 4

Monitor Token Usage and Delays

The simple stuff is sometimes most important. The ability to break out usage
by tokens and API delays is important to track ad monitor. The ability to add
custom metrics on top of the counts is important to teams tracking actual
costs. The ability to use tags to segment out tasks and usage patterns is
important for tracking.

Fine Tuning Workflows

The fine tuning approach is key to improving long term model
performance, and the key to fine tuning is collecting the right data. As
teams discover problem clusters, saving those clusters then applying them
to export the right fine tuning datasets is a pivotal part of the workflow
needed to improve the core datasets.

http://www.arize.com

| The Definitive ML Observability Checklist | Page 16 ↑ Table of contents

S E C T I O N 0 5

Explainability

Ability to view the feature importance for the
top n features

Embeddings – vector (mathematical) representations of data where linear
distances capture structure in the original datasets – are everywhere in
modern deep learning, from deep neural networks to transformers. By
monitoring embeddings of their unstructured data, teams can proactively
identify when their unstructured data is drifting in and improve their CV
and NLP models in production.

Since the metrics typically used for drift in structured data – such as
Kullback-Leibler divergence (KL divergence) – only allow for statistical
analysis on structured labels and do not extend to unstructured data, an
ML observability solution needs to support a metric that is proven to be
sensitive and stable like Euclidean distance to quantify embedding drift.

Explainability isn’t a leading indicator of model performance and
therefore shouldn’t be the primary functionality you evaluate when
selecting an ML observability solution. However, model explainability
can be a useful tool when performing deeper root cause analysis after
identifying an issue, or exploring ways to improve a model to deliver
better outcomes in future iterations. The ability to introspect and
understand why a model made a particular prediction is also important
for AI ethics and broader organizational concerns.

http://www.arize.com

| The Definitive ML Observability Checklist | Page 17 ↑ Table of contents

There are several levels of explainability to consider,
each with potential to assist in various stages of model
training, validation, and production
• Global explainability: Model explainability across all predictions,

attributing which features contributed the most to the model’s
decisions. Global explainability is useful to convey how a model makes
decisions on average and can help you detect problematic logic before
a model ships into production.

• Cohort explainability: Model explainability for a particular subset of
data, also known as a cohort. Cohort explainability is useful when
attempting to convey why a model isn’t performing as well for a set
of inputs and in discovering model bias. This is particularly useful
in validation, when you’re testing your model’s ability to generalize
performance across your dataset.

• Local explainability: Model explainability for an individual prediction.
This level of explainability conveys why, for a specific example, did
the model make that particular decision. Local explainability is
indispensable for root causing a particular issue in production —  for
example, to answer customer support questions.

S E C T I O N 0 5

http://www.arize.com

| The Definitive ML Observability Checklist | Page 18 ↑ Table of contents

S E C T I O N 0 6

Business Impact Analysis
Business metrics go hand in hand with model performance metrics
and —  when properly defined —  they should be linked. At the end of the
day, you aren’t shipping a F1 score to your customers, so it’s important to
keep in touch with how your models are affecting how each customer is
experiencing your product.

Since these metrics are not easy for a model to optimize for, the
optimization problem will be set up using a parallel metric.

Custom user defined function (UDF) to tie model
performance back to business metrics

The cost of model mistakes to a business and its consumers generally
aren’t equal. With credit card transactions, for example, a false positive
for fraud typically just means a minor inconvenience to the customer
who might need to verify over email/text that a transaction was
legitimate —  whereas a false negative is an immediate financial loss for
the credit card provider.

Look for an ML observability solution that doesn’t simply flag when there’s
a potential performance issue, but enables you to analyze the potential
risk to the business. This can be in the form of UDF or formulas that tie
true positive, false negative, false positive, true negative thresholds back
to your target business metrics.

Dynamically analyze thresholds for probability-
based decision models

Once you’ve defined your business metrics, you’ll want the ability
to analyze the thresholds in which your probability-based decision
models are able to operate before regressions have a meaningful
impact on your business goals. If a model can drift 10% before any
measurable impact is seen, for example, you can configure your
monitors accordingly.

http://www.arize.com

| The Definitive ML Observability Checklist | Page 19 ↑ Table of contents

Compare pre-production models to current
production models —  champion and challenger

This is especially useful when approximating the business risk or
incremental performance lift of deploying a new model or model
version into production.

S E C T I O N 0 6

http://www.arize.com

| The Definitive ML Observability Checklist | Page 20 ↑ Table of contents

Model versioning and lineage support

The following can be helpful in comparative analysis:
• Ability to send predictions for different versions of the model.

• Ability to determine which model versions belong to the same model.

• Ability to compare performance of two different model versions and
automatically surface which model is better-performing and why.

• Ability to set up customizable multi-model analytics for different model
versions and models on the same dashboard.

S E C T I O N 0 7

Model Lineage, Validation & Comparison

Pre-Launch model validation

To avoid situations where ML teams are shipping models into
production “blind,” it’s highly recommended that any model
observability solution you employ provides a number of pre-launch
validation capabilities, including:
• Ability to track training datasets and product predictions data

across model versions.

• Ability to track multiple validation datasets as “batches.”

• Ability to set up customizable dashboards analyzing pre-
production datasets.

• Ability to compare business impact of a new not-launched model
versus production-deployed model.

Think of these like CI/CD checks for ML models. The more readily
you are able to map changes in model version, datasets used, and
expected results, the better able you are to focus your monitoring
and troubleshooting efforts.

http://www.arize.com

| The Definitive ML Observability Checklist | Page 21 ↑ Table of contents

S E C T I O N 0 8

Data Quality Monitoring & Troubleshooting

Monitor production model for bad inputs

The ability to triangulate whether the production issues you are
encountering are due to a faulty model or a problem with the data source
is fundamental to guiding your troubleshooting and remediation efforts.

Because the relationship between the data feeding a model and its
outcomes are inextricably linked, look for ML observability solutions
that can help you monitor and troubleshoot both inputs and outputs.
Data quality monitoring should include: data schema change, data
malformation, new ground truth class, bad/missing values in columns
expected to be clean, among others.

A model is often only as good as the data it is trained on. Data quality
doesn’t stop being important after the model is trained, but continues
to remain important as the model is deployed in production. The quality
of the model’s predictions is highly dependent on the quality of the data
sources powering the model’s features.

Configurable real-time statistics on features &
predictions (min, max, median, mean, standard
deviation) in aggregate and by cohorts

Think of this as your first line of defense against performance
regressions. Minor fluctuations in data will not likely result in drastic
model behavior or indicate a point of concern, but seeing feature
values that are, for example, two standard deviations from what you’d
generally expect is probably a red flag.

Because you are best equipped to understand the parameters in
which your model was meant to thrive and its limitations, look for ML
observability solutions that offer pre-set as well as fully configurable
thresholds for data quality monitoring.

http://www.arize.com

| The Definitive ML Observability Checklist | Page 22 ↑ Table of contents

Ability to detect anomalous behavior (outlier
detection) on predictions

When the cost of model mistakes are high, as is often the case in
industries such as healthcare or insurance, the ability to flag extreme or
out-of-place behavior is incredibly important.

A handful of outliers may simply warrant human intervention to review
the model decision, whereas a large or increasing number of outliers
could indicate a problem with the model or data source itself.

Configurable baseline setup

Flexible ways to set up a baseline are also important in data quality
monitoring. Baselines can come from training, validation, and
production. An ML observability platform’s inference store should
have a history of data to reference from training sets or historical
production data to set intelligent baselines and thresholds to balance
the frequency of alerts and give power back to ML teams to ensure
high-performing models in production.

S E C T I O N 0 8

http://www.arize.com

| The Definitive ML Observability Checklist | Page 23 ↑ Table of contents

S E C T I O N 9

Integration Functionality

Agnostic of model types/libraries

Your ML observability solution should connect seamlessly into your existing
ML stack and model building framework, not the other way around.

Support SaaS, on-prem and hybrid deployments

While SaaS comes with many benefits of dynamic scale and reduced
operational overhead, there are simply instances where a project,
team, line of business, or entire organization needs to operate in
a private installation. Look for vendors that are able to reasonably
accommodate these needs now and in the future.

Specializes in model monitoring and observability
instead of providing an end-to-end hosting and
serving system

Machine learning systems and models are incredibly complex and
require substantial investments in resources from a financial and
talent perspective. We highly encourage ML teams to look for purpose-
built solutions designed with this complexity and domain expertise in
mind for a variety of reasons, namely:
• Depth of use cases supported:  solutions that are built for a

particular purpose (i.e. production observability) often provide more
comprehensive value for that specific area.

• Flexibility to customize your own stack:  connect the best solutions
across your ML lifecycle rather than settling for what’s “included in
the box.”

• Maintain autonomy in choice and control:  it’s easy to get locked
into building your stack around the pricing models of end-to-end
hosting and serving platforms. Instead, consider the specific value
being extracted from the tools and their limitations —  just because
something is there doesn’t mean it’s worth using.

http://www.arize.com

| The Definitive ML Observability Checklist | Page 24 ↑ Table of contents

Ability to set up alerts that integrate with PagerDuty
or your preferred incident response platform

As mentioned, the ease of connecting into your existing ML stack and
systems is paramount.

Automatically infers the model type and calculates
the appropriate metrics for monitoring

When you’re dealing with hundreds or thousands of models,
efficiency of automation is key to scaling production monitoring and
observability. Look for platforms that can automatically detect the
schema of models and data being sent through to save yourself set-up
time in the future.

Ability to easily import data from and export to
external data sources

Your observability solution shouldn’t impede the flow of data across
your systems or workflows. Look for solutions that allow you not only to
easily import data, but extract easy-to-interpret insights to share out to
stakeholders (in the form of custom dashboards or otherwise) and in
rawer formers such as a Jupyter notebook that can be shared back to
the data science or model-building team.

S E C T I O N 9

http://www.arize.com

| The Definitive ML Observability Checklist | Page 25 ↑ Table of contents

S E C T I O N 1 0

UI / UX Experience
While function is paramount for your ML observability solution, form
shouldn’t have to be a tradeoff!

Flexible, customizable dashboards that technical
and non-technical stakeholders can check to
determine if models have changed

Your analysis is only as useful as your ability to easily convey the
findings across your team and business. The ideal ML observability
solution should complement your efforts with the ability to present
rich, interpretable insights that are useful to any type of stakeholder
you work with. Look for:
• Fully customizable dashboards.

• Ease of sharing (links that save filters, PDF export, etc).

• Intuitive data visualizations via heatmaps, charts, and other
at-a-glance formats.

Dark mode (optional)

Monitoring and troubleshooting models is hard work, but it doesn’t
need to be hard on your eyes, too.

http://www.arize.com

| The Definitive ML Observability Checklist | Page 26 ↑ Table of contents

S E C T I O N 1 1

Scalability To Meet Current and
Future Analytics Complexity
A platform’s architecture matters, particularly when supporting
enterprise scale; without it, ML teams might be delayed or lose insights
at the worst possible time.

Ability to handle analytic workloads

Knowing where a platform is using online transaction processing (OLTP)
versus online analytics processing (OLAP) is important since each is
optimized for different workloads. Ideally, the analytic data from which
numeric reports are built should be housed in an OLAP, columnar system
(i.e. Druid). OLTP or row-based engines will often fail at analytic workloads
once the quantity of datapoints in each query becomes large since these
systems are not optimized for fast scans of millions to billions of rows
and are generally not able to support interactive queries (i.e. subsecond
latencies). It’s also important to be able to scale out that workload beyond
a single server instance —  generally, you need something that can expand
query semantics to terabytes or petabytes of data.

Ability to support load testing

As the old proverb says: trust, but verify. In addition to asking for a
reference customer, a load test can be helpful in proving ability to
handle current analytics complexity. A few example parameters:
• Test > 500 features.

• Test > 50M predictions a day with a total of over 500M to 1B predictions
in total over a testing period (10+ days or more).

To kickstart your ML observability journey today, sign up for a free Arize account,
book a demo, or join the Arize community.

http://www.arize.com
http://www.arize.com
https://twitter.com/arizeai
https://aparnadhinak.medium.com/
https://arize.com/request-a-demo/
https://arize.com/sign-up/
https://arize.com/community/

