
Machine learning troubleshooting is painful and time-consuming
today, but it doesn’t have to be. This paper charts the evolution that
ML teams go through — from no monitoring to monitoring to full-stack
ML observability — and offers a modernization blueprint for teams to
implement ML performance tracing to solve problems faster.

Model Performance
Management

The Next Evolutionary Step In

Table of contents

Step One: From No Monitoring To Monitoring

Introduction: The Pain Is Real 1

Machine Learning Performance Monitoring 3

 What Data Is Needed to Do Performance Monitoring? 3

 What Are the Right Metrics for My Model? 5

 What Are the Right Thresholds? 6

Step Two: From Monitoring To Full-Stack ML Observability With ML Performance Tracing

Key Components of Observability 7

Introduction to ML Performance Tracing 10

 Step 1: Compare to Something You Know 11

 Step 2: Go Beyond Averages and Analyze Performance of Slices 12

 Step 3: Root Cause & Resolve 16

Conclusion 17

A Modern Playbook For Model Performance Management | Page 1

Introduction: The Pain Is Real

To paraphrase a common bit of wisdom, if a machine learning model runs in production
and no one is complaining, does it mean the model is perfect? The unfortunate truth is that
production models are usually left alone unless they lead to negative business impacts

Let’s look at an example of what may happen today:

As a machine learning engineer (MLE) for a fintech company, you maintain a fraud-detection
model It has been in production for a week, and you are enjoying your morning coffee when
a product manager (PM) urgently complains that the customer support team has seen a
significant increase in calls complaining about fraudulent transactions

This costs the company a fortune in chargeback transactions The company is spending tens of
thousands of dollars every hour, and you have to fix it now

Gulp Is it your model? Software engineers tell you that the problem is not on their end

From No Monitoring To Monitoring

Part One:

A Modern Playbook For Model Performance Management | Page 2

You write a custom query to pull data from logs of the last million predictions that your
model has made in the past three days The query takes some time to run, you export the
data, do some minimal preprocessing, import it into a Jupyter notebook, and eventually start
calculating relevant metrics for the sample data you pulled

There doesn’t seem to be a problem in the overall data Your PM and customers are still
complaining, but all you see is maybe a slight increase in fraudulent activity

More metrics, more analysis, more conversations with others There’s something going on, it’s
just not obvious So you start digging through the data to find a common pattern on the fraud
transactions that the model is missing You’re writing ad-hoc scripts to slice into the data

This takes days or weeks of all-consuming effort Everything else you were working on is now
on pause until this issue is resolved because: 1) you know the model the best; and 2) every bad
prediction is costing the company revenue

Eventually you see something odd If you slice by geographies, California seems to be
performing somewhat worse than it did a few days ago You filter to California and realize some
of the merchant IDs belong to scam merchants that your model did not pick up You retrain
your model on these new merchants and save the day

This example helps us see what it takes to troubleshoot a machine learning model today It is
many times more complex than troubleshooting traditional software We are shipping AI blind

There are many monitoring tools and techniques for traditional software engineering — things
like Datadog and New Relic — that automatically surface performance problems But what
does monitoring look like for machine learning models?

A Modern Playbook For Model Performance Management | Page 3

Machine Learning Performance Monitoring

First, let’s make sure we have a definition of what monitoring is: monitoring, at the most basic
level, is data about how your systems are performing; it requires that data are made storable,
accessible, and displayable in some reasonable way

What Data Is Needed to Do Performance Monitoring?
To monitor machine learning models’ performance, you must begin with a prediction
and actual

A model has to make some predictions This can be predicting the estimated time of arrival
(ETA) of when the ride is going to arrive in a ride-sharing app It can also be what loan amount
to give a certain person A model can predict if it will rain on Thursday At a fundamental level,
this is what machine learning systems do: they use data to make a prediction

Since what you want is to predict the real world, and you want that prediction to be accurate, it
is also useful to look at actuals (also known as ground truth) An actual is the right answer — it
is what actually happened in the real world Your ride arrived in five minutes, or it did rain on
Thursday Without comparison to the actuals, it is very difficult to quantify how the model is
performing until your customers complain

But getting the actuals is not a trivial endeavor There are four cases here:

1. Quick Actuals: In the easiest case, actuals are surfaced to you for every prediction, and
there is a direct link between predictions and actuals, allowing you to directly analyze the
performance of your model in production This can happen in the case of predicting the
ETA of your ride, for example At some point the ride will arrive, and you will know how long
that took and whether the actual time matched your prediction

https://arize.com/model-monitoring/

A Modern Playbook For Model Performance Management | Page 4

2. Delayed Actuals: In the diagram below, while we see that actuals for the model are
eventually determined, they come too late for the desired analysis

 When this actuals delay is small enough, this scenario doesn’t differ too substantially
from quick actuals There is still a reasonable cadence for the model owner to measure
performance metrics and update the model accordingly, as one would do in the real-time
actuals scenario

However, in systems where there is a significant delay in receiving the actuals, teams may
need to turn to proxy metrics Proxy metrics are alternative signals that are correlated with
the actuals that you’re trying to approximate

 For example, imagine you are using a model to determine which consumers are most likely
to default on their credit card debt A potential proxy metric in this scenario might be the
percentage of customers to whom you have lent credit that make a late payment

3. Causal Influence on Actuals (Biased Actuals): Not all actuals are created equal In some
cases, teams receive real-time actuals but the model’s predictions have substantially
affected the outcome To take a lending example, when you decide to give loans to certain
applicants, you will receive actuals on those applicants but not those you rejected You
will never know, therefore, whether your model accurately predicted that the rejected
applicants would default

A Modern Playbook For Model Performance Management | Page 5

4. No Actuals: Having no actuals to connect back to model performance is the worst-case
scenario for a modeling team One way to acquire ground truth data is to hire human
annotators or labellers Monitoring drift in the output predictions can also be used to
signal aberrant model behavior even when no actuals are present

For a deeper dive on these scenarios, see our “Playbook To Monitor Your Model Performance
In Production ”

Gathering your predictions and your actuals is the first step But in order to do any
meaningful monitoring, you need to have a formula for comparing your predictions and your
actuals—you need the right metric

What Are the Right Metrics for My Model?
The correct metric to monitor for any model depends on your model’s use case Let’s look
at some examples

FRAUD
A fraud model is particularly hard to assess with simple measures of accuracy since the
dataset is extremely unbalanced (a great majority of transactions are not fraudulent) Instead,
we can measure:

• Recall, or what portion of fraud examples your model identified that are true positives

• False negative rate measures fraud that a model failed to predict accurately It is a key
performance indicator since it’s the most expensive to organizations in terms of direct
financial losses, resulting in chargebacks and other stolen funds

• False positive rate  —  or the rate at which a model predicts fraud for a transaction that
is not actually fraudulent  —  is also important because inconveniencing customers has
its own indirect costs, whether it’s in healthcare where a patient’s claim is denied or in
consumer credit where a customer gets delayed buying groceries

https://arize.com/blog/monitor-your-model-in-production/
https://arize.com/blog/monitor-your-model-in-production/
https://arize.com/blog/best-practices-in-ml-observability-for-monitoring-mitigating-and-preventing-fraud/
https://www.linkedin.com/pulse/cost-financial-crime-surge-above-145-trillion-2019-che-sidanius/

A Modern Playbook For Model Performance Management | Page 6

DEMAND FORECASTING
Demand forecasting predicts customer demand over a given time period For example,
an online retailer selling computer cases might need to forecast demand to make sure
that they can meet customer needs and not buy too much inventory Like other time-
series forecasting models, it is best described by metrics like ME, MAE, MAPE, and MSE

• Mean error (ME) is average historical error (bias) A positive value signifies an
overprediction, while a negative value means underprediction While mean error
isn’t typically the loss function that models optimize for in training, the fact that it
measures bias is often valuable for monitoring business impact

• Mean absolute error (MAE) is the absolute value difference between a model’s
predictions and actuals, averaged out across the dataset It’s a great first glance at
model performance since it isn’t skewed by extreme errors of a few predictions

• Mean absolute percentage error (MAPE) measures the average magnitude of
error produced by a model It’s one of the more common metrics of model
prediction accuracy

• Mean squared error (MSE) is the difference between the model’s predictions and
actuals, squared and averaged out across the dataset MSE is used to check how close
the predicted values are to the actual values As with root mean square error (RMSE),
this measure gives higher weight to large errors and therefore may be useful in cases
where a business might want to heavily penalize large errors or outliers

OTHER USE CASES
From click-through rate to lifetime value models, there are many machine learning use
cases and associated model metrics For a deeper dive on model metrics by use case,
see this resource hub

What Are the Right Thresholds?
So now you have your metric, and you’re faced with a new problem: how good is good
enough? What is a good accuracy rate? Is my false negative rate too high? What is
considered a good RMSE?

Absolute measures are very difficult to define Instead, machine learning practitioners
must rely on relative metrics In particular, you must determine a baseline performance
While you are training the model, your baseline could be an older model you have
productized, a state-of-the-art model from literature, or human performance But once
the model is in production, it becomes its own benchmark If you have a three percent
false negative rate on day one and then a 10% false negative rate today, you should wake
up your engineers!

Often, initial performance is not what is actually used; instead, you can use a rolling
30-day performance

When the model shifts significantly (a standard deviation or more), an alert must be
triggered This should be an automated setup based on a baseline dataset so that you
can be alerted proactively

https://arize.com/blog/best-practices-for-ml-monitoring-and-observability-of-demand-forecasting-models/
https://arize.com/blog/best-practices-in-ml-observability-for-click-through-rate-models/?utm_campaign=Newsletter%20-%20DRIFT&utm_medium=email&_hsmi=200148615&_hsenc=p2ANqtz--zUmN-jmatwbyGtcieZHClbljdcs-uBzht8mAO7FxhEVdfwxQFJVFujmcVUGJUFao3rHO47MJKKDe8LOJlmiyLvjQ2Uw&utm_content=200148615&utm_source=hs_email
https://arize.com/blog/best-practices-in-ml-observability-for-customer-lifetime-value-ltv-models/
https://arize.com/use-case/

A Modern Playbook For Model Performance Management | Page 7

With the essentials of model performance monitoring out of the way, many might
understandably feel confident in their ability to continuously assess model accuracy
and quality

However, monitoring alone is not enough To see why, let’s revisit the fraud use case from
the beginning of the paper You are enjoying your morning coffee, but this time you have
performance monitoring in place Instead of getting a complaint from a product manager,
you get a PagerDuty alert saying that “Fraud model performance declined ”

Your product manager, customer support team, and customers are still blissfully unaware
of the increase in fraudulent transactions and you are aware of the issue before it has a big
impact on the company The performance metric has crossed the threshold, and you see the
red light – but now what? To pinpoint and fix the issue, ML observability is needed

In infrastructure and systems, logs, metrics, and tracing are all key to achieving observability
These components are also critical to achieving ML observability, which is the practice of
obtaining a deep understanding into your model’s data and performance across its lifecycle

Key Components of Observability

From Monitoring To Full-Stack ML
Observability With ML Performance Tracing

Part Two:

https://iamondemand.com/blog/the-3-pillars-of-system-observability-logs-metrics-and-tracing/

A Modern Playbook For Model Performance Management | Page 8

Key Components of
ML Observability

• Inference Store: Records
of ML prediction events
that were logged from
the model These are the
raw prediction events
that hold granular
information about the
model’s predictions There
are some key differences
between what logs in
system observability
means and an inference
store in ML Observability
Will cover this in an
upcoming post!

• Model Metrics: Calculated
metrics on the prediction
events to determine
overall model health over
time — this includes drift,
performance, and data
quality metrics These
metrics can then be
monitored

• ML Performance Tracing:
While logs and metrics
might be adequate
for understanding
individual events or
aggregate metrics,
they rarely provide
helpful information
when debugging
model performance To
troubleshoot model
performance, you need
another observability
technique called ML
performance tracing

This paper covers how to use
ML performance tracing for
root cause analysis

A Modern Playbook For Model Performance Management | Page 9

Key Components of Observability: Systems versus Machine Learning

System Observability ML Observability

Logs

• Records of an event that happened
within an application

• Typically not mutable by an event ID

• Searchable by tags and unstructured
indexes

Inference Store

• Records of ML prediction events that
are logged from the model

• Raw prediction events that hold
granular context about the models
predictions

• Mutable by prediction ID and
dataset

Metrics

• Measured values of system
performance

• Metrics comprise a set of attributes
(ie value, label, and timestamp) that
convey information about SLAs,
SLOs, and SLIs

Model Metrics

• Calculated metrics on the prediction
events

• Provides ways to determine model
health over time—this includes
drift, performance, and data quality
metrics

• Metrics can be monitored

• Metrics can be aggregate or slice-
level

Tracing

• Provides context for other
components of observability (logs,
metrics)

• Follows the entire lifecycle of a
request or action across distributed
systems

ML Performance Tracing

• ML performance tracing is the
methodology for pinpointing the
source of a model performance
problem

• Involves mapping back to the data
that caused the problem

• Necessarily a distinct discipline
because logs and metrics are
rarely helpful for debugging model
performance

A Modern Playbook For Model Performance Management | Page 10

Introduction to ML Performance Tracing

Definition: What Is ML Performance Tracing?
ML performance tracing is the methodology for pinpointing the source of a
model performance problem and mapping back to the underlying data issue
causing that problem

In infrastructure observability, a trace represents the entire journey of a request or action as
it moves through all the various nodes of a distributed system In ML observability, a trace
represents the model’s performance across datasets and in various slices It can also trace the
model’s performance through multiple dependency models to root cause which sub-model is
causing the performance degradation Most teams in industry today are single-model systems,
but we see a growing set of model dependency chains

In both infrastructure and ML observability, by analyzing trace data, you and your team can
measure overall system health, pinpoint bottlenecks, identify and resolve issues faster, and
prioritize high-value areas for optimization and improvements

Let’s dig into the ML performance tracing workflow It follows three core steps:

 Step 1: Comparing to another dataset;

 Step 2: Performance breakdowns by slices;

 Step 3: Root cause and resolution

https://arize.com/ml-observability/

A Modern Playbook For Model Performance Management | Page 11

Step 1: Compare to Something You Know

Model performance only really makes sense in relation to something — if the alert fired,
something must have changed

Machine learning models rely on data and code One of those must be held constant for
comparison while you change the other So you either compare the same model on multiple
datasets or multiple models on the same dataset

Troubleshooting machine learning requires comparing across datasets.

What datasets do we have to compare?

1. Training data. Your model must have been trained on something, and you can look for
differences between the training dataset and the data you are seeing in production For
example, perhaps a fraud detection model is having an issue in production You can pull
the original training dataset and see how the percent false negative changed since then

2. Validation data. After training your model, you would have evaluated it on a validation
dataset to understand how your model performs on data it did not see in training How
does the performance of your model now compare to when you validated it?

3. Another window of time in production. If your model was in production last week and
the alert did not fire, what changed since then?

You can also compare your model’s performance to a previous model that you had in
production Last month’s model might give you more accurate ETAs for your food delivery,
for example

https://arize.com/use-case/fraud-detection/
https://arize.com/solutions/fraud-detection/

A Modern Playbook For Model Performance Management | Page 12

Step 2: Go Beyond Averages and Analyze Performance of Slices

Definition: What Is a Slice?
A dataset slice identifies a subset of your data that may behave qualitatively
differently than the rest For example, rideshare customers picked up from the
airport may differ significantly from the “average” riders

Comparing one metric across
the whole dataset is fast,
but averages often obscure
interesting insights Most
frequently you are looking at
a small slice, like a subset of a
subset of data If you can find
the right slice, figuring out
the problem becomes almost
trivial Ideally, this should not
involve hundreds or thousands
of SQL queries because you
should be able to narrow your
options quickly

For example, if you saw the
entire production dataset for
your fraud detection model with
slightly abnormal performance,
it may not tell you much If, on the
other hand, you saw a smaller slice with
significantly worse performance from
your California transactions, that may help
you identify what’s going on Better yet: if
you narrow it down to California, a particular
merchant category, and a particular merchant
– and see that all or most transactions were
fraudulent –that may help you identify the cause
in minutes instead of days

Real insights often lie several layers down

https://research.google/pubs/pub46555/
https://research.google/pubs/pub46555/

A Modern Playbook For Model Performance Management | Page 13

You want to be able to
quickly identify what
is pulling your overall
performance down You
want to know how your
model is performing across
different segments versus
your comparison dataset

This desire is complicated,
however, by the
exponential explosion in
the number of possible
combinations of segments
You may have thousands
of features with dozens of
categories each, and a slice
can contain any number
of features So how do you
find the ones that matter?

In order to automate this, you need some way to rank which segments are contributing
the most to the issue you are seeing If such a ranking existed, you could employ
compute power to crunch through all the possible combinations and sort the amount
of contribution from each segment

To calculate performance impact score for a slice, Arize takes the difference between
performance in a slice and the average performance on the dataset and multiplies
it by volume We can then look at the maximum of all slices and surface the
corresponding slice automatically

The Calculation Behind Performance Impact Score

max((Deltas between slice and global average metric) * volume)

For example, if your metric of interest is MAE:

• Compute (Slice MAE — Avg MAE) * Volume [for each slice]
• Max [slices]

The volume should be normalized as the number of examples in the slice divided by the total number of
examples in the dataset.

Introducing: Performance Impact Score
Performance impact score is a measure of how much worse your metric
of interest is on the slice compared to the average

A Modern Playbook For Model Performance Management | Page 14

So the process for MAE (for example) is:

1. Calculate MAE score on your dataset

2. For each slice find:

 a) Number of examples in the slice divided by the number of examples in the
 dataset —let’s call it normalized slice volume

 b) Slice MAE minus total MAE (found in step 1)— let’s call it delta

 c) Delta (from 2b) divided by normalized slice volume (from 2a)

3. Take the maximum of all slices’ results for 2c.

Ideally, the ML engineer should see where the problem is at a glance Good visualization
and easy navigation can make this process very intuitive and help the engineer focus on
providing insight — the job that humans are best at

Continuing with the example of the fraud model, sorting by performance impact score
enables you to narrow in on a slice – in this case, a specific merchant named “scammeds
com” in California – dragging down performance by 30% compared to the average Since
there was no data for this slice in training, it might indicate the need to retrain the model
or revert to a different version

A Modern Playbook For Model Performance Management | Page 15

Breaking out the feature “merchant_name” by accuracy and volume further reveals
that the model’s accuracy for “scammeds com” in production is only five percent –
hence its drag on overall performance despite only representing a small share of overall
transaction volume (~15%)

How Does Explainability Fit Into ML Observability?

Explainability in machine learning refers to the importance of the feature to a prediction
Some features may have much more impact on predicting fraud than others It is
tempting to look at explainability as the holy grail of segmentation, but you must be
careful in doing so

Explainability is the beginning of the journey to resolving the problem, not an end in itself
As Chip Huyen notes, explainability helps you understand the most important factors
behind how your model works Observability, on the other hand, helps you understand
your entire system Observability encompasses explainability and several other concepts

Using feature importance can help you sort and prioritize where to troubleshoot.

Returning to the example of the fraud model, explainability can be illustrative as to where
the problem lies If you sort by which features have the most importance to the model, you
will soon find that the features state (i e California) and merchant name (i e scammeds
com) are important to examine further to uncover the underlying performance issue

While explainability is a terrific tool, it should not be used as a silver bullet to troubleshoot
your models Performance impact score offers more information by describing which
segment has the biggest impact on why performance dropped

https://huyenchip.com/2022/02/07/data-distribution-shifts-and-monitoring.html

A Modern Playbook For Model Performance Management | Page 16

Step 3: Root Cause & Resolve

You uncovered the needle in the haystack and found where the model is not doing well
Congratulations! Now, let’s get to the harder question — why?

Here are the three most common reasons model performance can drop:

1 One or more of the features has a data quality issue;

2 One of more of the features has drifted, or is seeing unexpected values in production; or

3 There are labeling issues

Let’s look at those in a bit more detail

1. One (or more) of the features has a data quality issue
Example: You are trying to figure out why the ETAs for a ride-sharing app are wrong, and you
find that the feature “pickup location” is always 0 5 miles off from the actual pickup location

Recommended solution: The data engineering team needs to go through the lifecycle of the
“pickup location” feature and figure out where it gets corrupted When they find the problem
and can implement a feature fix, it should improve the ETAs

2. One (or more) of the features has drifted, or is seeing unexpected values in production
Example: You see a spike of fraud transactions for your model, but your model is not picking
them up In other words, there is an increase in false negatives This is coming from a specific
merchant ID (which is a feature sent to your model) You are also receiving a huge spike from
this merchant ID lately You should see a drift in this merchant ID feature, showing that you
are seeing more transactions from this merchant than before

Recommended solution: In this case, you want to know what feature has changed either
since you built the model or since before the performance decline You want to find the root
cause of the merchant ID distribution drift After that, you may need to retrain your model,
upsampling the new merchant ID that you didn’t see as much of before In some cases, you
might even want to train another model just for this use case

3. There are labeling issues
Example: A model predicting house prices is showing an extreme discrepancy across price
distributions for a particular zip code Zip code has very high importance Upon further
inspection, you find that the training data reveals this zip code is being labeled with two
different city names, such as Valley Village and North Hollywood (the “Hollywood” city name
yields higher house prices)

Recommended solution: Highlight the issue to the labeling provider, and provide clarification
in labeling documentation

https://arize.com/blog/take-my-drift-away/
https://arize.com/model-drift/'

A Modern Playbook For Model Performance Management | Page 17

To implement full-stack ML observability with performance tracing
with Arize, sign up for an account today.

For the latest on ML observability best practices and tips, Sign up
for our monthly newsletter The Drift.

The excitement around machine learning in the last decade has made it possible for ML
models to get adopted quickly, solving very complex problems with large business impacts
Machine learning systems are usually built on top of data pipelines and other complex
engineering systems that feed the models the data needed to make predictions

However, real-life complexities often mean that an error in the smallest slice can lead to a
substantial loss of economic value Today this means that ML engineers must spend a lot of
their time writing SQL queries and manually dissecting the model until a solution emerges
There is also a natural tendency to look at explainability as a shortcut While explainability can
often help you understand the problem, it is important to have other tools in your arsenal—
particularly ML performance tracing—to get to the bottom of issues

To recap, the fundamentals of ML performance tracing are:

1. Compare to something you know;

2. Go beyond averages into slices of data; and

3. Root cause and resolve

Ultimately, knowing what information to seek and having good tools that surface the
information quickly — and in an easily digestible way — can save many hours, dollars,
and customer relationships

Conclusion

https://app.arize.com/auth/join?utm_campaign=Q2%202022:%20Blog%20Posts&utm_source=Papers

https://arize.com/blog/?utm_campaign=Q42021%3A%20Survey&utm_source=Survey%20Paper#blog-subscribe-modal
http://www.arize.com
https://twitter.com/arizeai
https://arize.com/blog/?utm_campaign=Q42021%3A%20Survey&utm_source=Survey%20Paper#blog-subscribe-modal

	part one: From No Monitoring To Monitoring
	Introduction: The Pain Is Real
	Machine Learning Performance Monitoring

	part two: From Monitoring To Full-Stack ML Observability With ML Performance Tracing
	Key Components of Observability
	Introduction to ML Performance Tracing
	Conclusion

