
Machine learning troubleshooting is painful and time-consuming 
today, but it doesn’t have to be. This paper charts the evolution that 
ML teams go through — from no monitoring to monitoring to full-stack 
ML observability — and offers a modernization blueprint for teams to 
implement ML performance tracing to solve problems faster.  

Model Performance 
Management

The Next Evolutionary Step In
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Introduction: The Pain Is Real

To paraphrase a common bit of wisdom, if a machine learning model runs in production 
and no one is complaining, does it mean the model is perfect? The unfortunate truth is that 
production models are usually left alone unless they lead to negative business impacts 

Let’s look at an example of what may happen today:

As a machine learning engineer (MLE) for a fintech company, you maintain a fraud-detection 
model  It has been in production for a week, and you are enjoying your morning coffee when 
a product manager (PM) urgently complains that the customer support team has seen a 
significant increase in calls complaining about fraudulent transactions 

This costs the company a fortune in chargeback transactions  The company is spending tens of 
thousands of dollars every hour, and you have to fix it now 

Gulp  Is it your model? Software engineers tell you that the problem is not on their end 

From No Monitoring To Monitoring

Part One:
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You write a custom query to pull data from logs of the last million predictions that your 
model has made in the past three days  The query takes some time to run, you export the 
data, do some minimal preprocessing, import it into a Jupyter notebook, and eventually start 
calculating relevant metrics for the sample data you pulled 

There doesn’t seem to be a problem in the overall data  Your PM and customers are still 
complaining, but all you see is maybe a slight increase in fraudulent activity 

More metrics, more analysis, more conversations with others  There’s something going on, it’s 
just not obvious  So you start digging through the data to find a common pattern on the fraud 
transactions that the model is missing  You’re writing ad-hoc scripts to slice into the data  

This takes days or weeks of all-consuming effort  Everything else you were working on is now 
on pause until this issue is resolved because: 1) you know the model the best; and 2) every bad 
prediction is costing the company revenue  

Eventually you see something odd  If you slice by geographies, California seems to be 
performing somewhat worse than it did a few days ago  You filter to California and realize some 
of the merchant IDs belong to scam merchants that your model did not pick up  You retrain 
your model on these new merchants and save the day 

This example helps us see what it takes to troubleshoot a machine learning model today  It is 
many times more complex than troubleshooting traditional software  We are shipping AI blind 

There are many monitoring tools and techniques for traditional software engineering — things 
like Datadog and New Relic — that automatically surface performance problems  But what 
does monitoring look like for machine learning models?



A Modern Playbook For Model Performance Management  |  Page 3

Machine Learning Performance Monitoring

First, let’s make sure we have a definition of what monitoring is: monitoring, at the most basic 
level, is data about how your systems are performing; it requires that data are made storable, 
accessible, and displayable in some reasonable way 

What Data Is Needed to Do Performance Monitoring?
To monitor machine learning models’ performance, you must begin with a prediction  
and actual 

A model has to make some predictions  This can be predicting the estimated time of arrival 
(ETA) of when the ride is going to arrive in a ride-sharing app  It can also be what loan amount 
to give a certain person  A model can predict if it will rain on Thursday  At a fundamental level, 
this is what machine learning systems do: they use data to make a prediction 

Since what you want is to predict the real world, and you want that prediction to be accurate, it 
is also useful to look at actuals (also known as ground truth)  An actual is the right answer — it 
is what actually happened in the real world  Your ride arrived in five minutes, or it did rain on 
Thursday  Without comparison to the actuals, it is very difficult to quantify how the model is 
performing until your customers complain 

But getting the actuals is not a trivial endeavor  There are four cases here:

1. Quick Actuals: In the easiest case, actuals are surfaced to you for every prediction, and 
there is a direct link between predictions and actuals, allowing you to directly analyze the 
performance of your model in production  This can happen in the case of predicting the 
ETA of your ride, for example  At some point the ride will arrive, and you will know how long 
that took and whether the actual time matched your prediction 

https://arize.com/model-monitoring/
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2. Delayed Actuals: In the diagram below, while we see that actuals for the model are 
eventually determined, they come too late for the desired analysis 

 When this actuals delay is small enough, this scenario doesn’t differ too substantially 
from quick actuals  There is still a reasonable cadence for the model owner to measure 
performance metrics and update the model accordingly, as one would do in the real-time 
actuals scenario 

  

However, in systems where there is a significant delay in receiving the actuals, teams may 
need to turn to proxy metrics  Proxy metrics are alternative signals that are correlated with 
the actuals that you’re trying to approximate 

  For example, imagine you are using a model to determine which consumers are most likely 
to default on their credit card debt  A potential proxy metric in this scenario might be the 
percentage of customers to whom you have lent credit that make a late payment 

3. Causal Influence on Actuals (Biased Actuals): Not all actuals are created equal  In some 
cases, teams receive real-time actuals but the model’s predictions have substantially 
affected the outcome  To take a lending example, when you decide to give loans to certain 
applicants, you will receive actuals on those applicants but not those you rejected  You 
will never know, therefore, whether your model accurately predicted that the rejected 
applicants would default  
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4. No Actuals: Having no actuals to connect back to model performance is the worst-case 
scenario for a modeling team  One way to acquire ground truth data is to hire human 
annotators or labellers  Monitoring drift in the output predictions can also be used to 
signal aberrant model behavior even when no actuals are present 

For a deeper dive on these scenarios, see our “Playbook To Monitor Your Model Performance  
In Production ”

Gathering your predictions and your actuals is the first step  But in order to do any 
meaningful monitoring, you need to have a formula for comparing your predictions and your 
actuals—you need the right metric   

What Are the Right Metrics for My Model?
The correct metric to monitor for any model depends on your model’s use case  Let’s look  
at some examples 

FRAUD
A fraud model is particularly hard to assess with simple measures of accuracy since the 
dataset is extremely unbalanced (a great majority of transactions are not fraudulent)  Instead, 
we can measure:

• Recall, or what portion of fraud examples your model identified that are true positives  

• False negative rate measures fraud that a model failed to predict accurately  It is a key 
performance indicator since it’s the most expensive to organizations in terms of direct 
financial losses, resulting in chargebacks and other stolen funds  

• False positive rate  —  or the rate at which a model predicts fraud for a transaction that 
is not actually fraudulent  —  is also important because inconveniencing customers has 
its own indirect costs, whether it’s in healthcare where a patient’s claim is denied or in 
consumer credit where a customer gets delayed buying groceries  

https://arize.com/blog/monitor-your-model-in-production/
https://arize.com/blog/monitor-your-model-in-production/
https://arize.com/blog/best-practices-in-ml-observability-for-monitoring-mitigating-and-preventing-fraud/
https://www.linkedin.com/pulse/cost-financial-crime-surge-above-145-trillion-2019-che-sidanius/
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DEMAND FORECASTING
Demand forecasting predicts customer demand over a given time period  For example, 
an online retailer selling computer cases might need to forecast demand to make sure 
that they can meet customer needs and not buy too much inventory  Like other time-
series forecasting models, it is best described by metrics like ME, MAE, MAPE, and MSE 

• Mean error (ME) is average historical error (bias)  A positive value signifies an 
overprediction, while a negative value means underprediction  While mean error 
isn’t typically the loss function that models optimize for in training, the fact that it 
measures bias is often valuable for monitoring business impact 

• Mean absolute error (MAE) is the absolute value difference between a model’s 
predictions and actuals, averaged out across the dataset  It’s a great first glance at 
model performance since it isn’t skewed by extreme errors of a few predictions 

• Mean absolute percentage error (MAPE) measures the average magnitude of  
error produced by a model  It’s one of the more common metrics of model  
prediction accuracy 

• Mean squared error (MSE) is the difference between the model’s predictions and 
actuals, squared and averaged out across the dataset  MSE is used to check how close 
the predicted values are to the actual values  As with root mean square error (RMSE), 
this measure gives higher weight to large errors and therefore may be useful in cases 
where a business might want to heavily penalize large errors or outliers 

OTHER USE CASES
From click-through rate to lifetime value models, there are many machine learning use 
cases and associated model metrics  For a deeper dive on model metrics by use case,  
see this resource hub  

What Are the Right Thresholds?
So now you have your metric, and you’re faced with a new problem: how good is good 
enough? What is a good accuracy rate? Is my false negative rate too high? What is 
considered a good RMSE?

Absolute measures are very difficult to define  Instead, machine learning practitioners 
must rely on relative metrics  In particular, you must determine a baseline performance  
While you are training the model, your baseline could be an older model you have 
productized, a state-of-the-art model from literature, or human performance  But once 
the model is in production, it becomes its own benchmark  If you have a three percent 
false negative rate on day one and then a 10% false negative rate today, you should wake 
up your engineers! 

Often, initial performance is not what is actually used; instead, you can use a rolling  
30-day performance 

When the model shifts significantly (a standard deviation or more), an alert must be 
triggered  This should be an automated setup based on a baseline dataset so that you 
can be alerted proactively 

https://arize.com/blog/best-practices-for-ml-monitoring-and-observability-of-demand-forecasting-models/
https://arize.com/blog/best-practices-in-ml-observability-for-click-through-rate-models/?utm_campaign=Newsletter%20-%20DRIFT&utm_medium=email&_hsmi=200148615&_hsenc=p2ANqtz--zUmN-jmatwbyGtcieZHClbljdcs-uBzht8mAO7FxhEVdfwxQFJVFujmcVUGJUFao3rHO47MJKKDe8LOJlmiyLvjQ2Uw&utm_content=200148615&utm_source=hs_email
https://arize.com/blog/best-practices-in-ml-observability-for-customer-lifetime-value-ltv-models/
https://arize.com/use-case/
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With the essentials of model performance monitoring out of the way, many might 
understandably feel confident in their ability to continuously assess model accuracy  
and quality  

However, monitoring alone is not enough  To see why, let’s revisit the fraud use case from 
the beginning of the paper  You are enjoying your morning coffee, but this time you have 
performance monitoring in place  Instead of getting a complaint from a product manager,  
you get a PagerDuty alert saying that “Fraud model performance declined ” 

Your product manager, customer support team, and customers are still blissfully unaware 
of the   increase in fraudulent transactions and you are aware of the issue before it has a big 
impact on the company  The performance metric has crossed the threshold, and you see the 
red light – but now what? To pinpoint and fix the issue, ML observability is needed  

In infrastructure and systems, logs, metrics, and tracing are all key to achieving observability  
These components are also critical to achieving ML observability, which is the practice of 
obtaining a deep understanding into your model’s data and performance across its lifecycle 

Key Components of Observability

From Monitoring To Full-Stack ML 
Observability With ML Performance Tracing

Part Two:

https://iamondemand.com/blog/the-3-pillars-of-system-observability-logs-metrics-and-tracing/
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Key Components of 
ML Observability 

• Inference Store: Records 
of ML prediction events 
that were logged from 
the model  These are the 
raw prediction events 
that hold granular 
information about the 
model’s predictions  There 
are some key differences 
between what logs in 
system observability 
means and an inference 
store in ML Observability  
Will cover this in an 
upcoming post!

• Model Metrics: Calculated 
metrics on the prediction 
events to determine 
overall model health over 
time — this includes drift, 
performance, and data 
quality metrics  These 
metrics can then be 
monitored  

• ML Performance Tracing: 
While logs and metrics 
might be adequate 
for understanding 
individual events or 
aggregate metrics, 
they rarely provide 
helpful information 
when debugging 
model performance   To 
troubleshoot model 
performance, you need 
another observability 
technique called ML 
performance tracing 

This paper covers how to use 
ML performance tracing for 
root cause analysis  
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Key Components of Observability: Systems versus Machine Learning

System Observability ML Observability

Logs

• Records of an event that happened 
within an application 

• Typically not mutable by an event ID 

• Searchable by tags and unstructured 
indexes 

Inference Store

• Records of ML prediction events that 
are logged from the model 

• Raw prediction events that hold 
granular context about the models 
predictions 

• Mutable by prediction ID and 
dataset 

Metrics

• Measured values of system 
performance

• Metrics comprise a set of attributes 
(ie  value, label, and timestamp) that 
convey information about SLAs, 
SLOs, and SLIs 

Model Metrics

• Calculated metrics on the prediction 
events 

• Provides ways to determine model 
health over time—this includes 
drift, performance, and data quality 
metrics 

• Metrics can be monitored 

• Metrics can be aggregate or slice-
level 

Tracing

• Provides context for other 
components of observability (logs, 
metrics) 

• Follows the entire lifecycle of a 
request or action across distributed 
systems 

ML Performance Tracing

• ML performance tracing is the 
methodology for pinpointing the 
source of a model performance 
problem 

• Involves mapping back to the data 
that caused the problem 

• Necessarily a distinct discipline 
because logs and metrics are 
rarely helpful for debugging model 
performance 
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Introduction to ML Performance Tracing 

Definition: What Is ML Performance Tracing?
ML performance tracing is the methodology for pinpointing the source of a 
model performance problem and mapping back to the underlying data issue 
causing that problem   

In infrastructure observability, a trace represents the entire journey of a request or action as 
it moves through all the various nodes of a distributed system  In ML observability, a trace 
represents the model’s performance across datasets and in various slices  It can also trace the 
model’s performance through multiple dependency models to root cause which sub-model is 
causing the performance degradation  Most teams in industry today are single-model systems, 
but we see a growing set of model dependency chains  

In both infrastructure and ML observability, by analyzing trace data, you and your team can 
measure overall system health, pinpoint bottlenecks, identify and resolve issues faster, and 
prioritize high-value areas for optimization and improvements 

Let’s dig into the ML performance tracing workflow  It follows three core steps: 

 Step 1: Comparing to another dataset; 

 Step 2: Performance breakdowns by slices; 

 Step 3: Root cause and resolution 

https://arize.com/ml-observability/
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Step 1: Compare to Something You Know

Model performance only really makes sense in relation to something — if the alert fired, 
something must have changed  

Machine learning models rely on data and code  One of those must be held constant for 
comparison while you change the other  So you either compare the same model on multiple 
datasets or multiple models on the same dataset 

Troubleshooting machine learning requires comparing across datasets.

What datasets do we have to compare?

1. Training data. Your model must have been trained on something, and you can look for 
differences between the training dataset and the data you are seeing in production  For 
example, perhaps a fraud detection model is having an issue in production  You can pull 
the original training dataset and see how the percent false negative changed since then 

2. Validation data. After training your model, you would have evaluated it on a validation 
dataset to understand how your model performs on data it did not see in training  How 
does the performance of your model now compare to when you validated it?

3. Another window of time in production. If your model was in production last week and 
the alert did not fire, what changed since then?

You can also compare your model’s performance to a previous model that you had in 
production  Last month’s model might give you more accurate ETAs for your food delivery, 
for example 

https://arize.com/use-case/fraud-detection/
https://arize.com/solutions/fraud-detection/
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Step 2: Go Beyond Averages and Analyze Performance of Slices

Definition: What Is a Slice? 
A dataset slice identifies a subset of your data that may behave qualitatively 
differently than the rest  For example, rideshare customers picked up from the 
airport may differ significantly from the “average” riders 

Comparing one metric across 
the whole dataset is fast, 
but averages often obscure 
interesting insights  Most 
frequently you are looking at 
a small slice, like a subset of a 
subset of data  If you can find 
the right slice, figuring out 
the problem becomes almost 
trivial  Ideally, this should not 
involve hundreds or thousands 
of SQL queries because you 
should be able to narrow your 
options quickly 

For example, if you saw the 
entire production dataset for 
your fraud detection model with 
slightly abnormal performance, 
it may not tell you much  If, on the 
other hand, you saw a smaller slice with 
significantly worse performance from 
your California transactions, that may help 
you identify what’s going on  Better yet: if 
you narrow it down to California, a particular 
merchant category, and a particular merchant 
– and see that all or most transactions were 
fraudulent –that may help you identify the cause 
in minutes instead of days 

Real insights often lie several layers down  

https://research.google/pubs/pub46555/
https://research.google/pubs/pub46555/


A Modern Playbook For Model Performance Management  |  Page 13

You want to be able to 
quickly identify what 
is pulling your overall 
performance down  You 
want to know how your 
model is performing across 
different segments versus 
your comparison dataset 

This desire is complicated, 
however, by the 
exponential explosion in 
the number of possible 
combinations of segments  
You may have thousands 
of features with dozens of 
categories each, and a slice 
can contain any number 
of features  So how do you 
find the ones that matter?

In order to automate this, you need some way to rank which segments are contributing 
the most to the issue you are seeing  If such a ranking existed, you could employ 
compute power to crunch through all the possible combinations and sort the amount 
of contribution from each segment 

To calculate performance impact score for a slice, Arize takes the difference between 
performance in a slice and the average performance on the dataset and multiplies 
it by volume  We can then look at the maximum of all slices and surface the 
corresponding slice automatically 

The Calculation Behind Performance Impact Score

max((Deltas between slice and global average metric) * volume)

For example, if your metric of interest is MAE:

• Compute (Slice MAE — Avg MAE) * Volume [for each slice]
• Max [slices]

The volume should be normalized as the number of examples in the slice divided by the total number of 
examples in the dataset.

Introducing: Performance Impact Score  
Performance impact score is a measure of how much worse your metric 
of interest is on the slice compared to the average  
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So the process for MAE (for example) is:

1. Calculate MAE score on your dataset

2. For each slice find:

 a) Number of examples in the slice divided by the number of examples in the  
      dataset —let’s call it normalized slice volume

 b) Slice MAE minus total MAE (found in step 1 )— let’s call it delta

 c) Delta (from 2b) divided by normalized slice volume (from 2a)

3. Take the maximum of all slices’ results for 2c.

Ideally, the ML engineer should see where the problem is at a glance  Good visualization 
and easy navigation can make this process very intuitive and help the engineer focus on 
providing insight — the job that humans are best at 

Continuing with the example of the fraud model, sorting by performance impact score 
enables you to narrow in on a slice – in this case, a specific merchant named “scammeds 
com” in California – dragging down performance by 30% compared to the average  Since 
there was no data for this slice in training, it might indicate the need to retrain the model 
or revert to a different version 
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Breaking out the feature “merchant_name” by accuracy and volume further reveals 
that the model’s accuracy for “scammeds com” in production is only five percent – 
hence its drag on overall performance despite only representing a small share of overall 
transaction volume (~15%) 

How Does Explainability Fit Into ML Observability?

Explainability in machine learning refers to the importance of the feature to a prediction  
Some features may have much more impact on predicting fraud than others  It is 
tempting to look at explainability as the holy grail of segmentation, but you must be 
careful in doing so 

Explainability is the beginning of the journey to resolving the problem, not an end in itself  
As Chip Huyen notes, explainability helps you understand the most important factors 
behind how your model works  Observability, on the other hand, helps you understand 
your entire system  Observability encompasses explainability and several other concepts 

Using feature importance can help you sort and prioritize where to troubleshoot.

Returning to the example of the fraud model, explainability can be illustrative as to where 
the problem lies  If you sort by which features have the most importance to the model, you 
will soon find that the features state (i e  California) and merchant name (i e  scammeds 
com) are important to examine further to uncover the underlying performance issue 

While explainability is a terrific tool, it should not be used as a silver bullet to troubleshoot 
your models  Performance impact score offers more information by describing which 
segment has the biggest impact on why performance dropped 

https://huyenchip.com/2022/02/07/data-distribution-shifts-and-monitoring.html
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Step 3: Root Cause & Resolve 

You uncovered the needle in the haystack and found where the model is not doing well  
Congratulations! Now, let’s get to the harder question — why?

Here are the three most common reasons model performance can drop:

1  One or more of the features has a data quality issue;

2  One of more of the features has drifted, or is seeing unexpected values in production; or

3  There are labeling issues 

Let’s look at those in a bit more detail 

1. One (or more) of the features has a data quality issue 
Example: You are trying to figure out why the ETAs for a ride-sharing app are wrong, and you 
find that the feature “pickup location” is always 0 5 miles off from the actual pickup location 

Recommended solution: The data engineering team needs to go through the lifecycle of the 
“pickup location” feature and figure out where it gets corrupted  When they find the problem 
and can implement a feature fix, it should improve the ETAs 

2. One (or more) of the features has drifted, or is seeing unexpected values in production
Example: You see a spike of fraud transactions for your model, but your model is not picking 
them up  In other words, there is an increase in false negatives  This is coming from a specific 
merchant ID (which is a feature sent to your model)  You are also receiving a huge spike from 
this merchant ID lately  You should see a drift in this merchant ID feature, showing that you 
are seeing more transactions from this merchant than before 

Recommended solution: In this case, you want to know what feature has changed either 
since you built the model or since before the performance decline  You want to find the root 
cause of the merchant ID distribution drift  After that, you may need to retrain your model, 
upsampling the new merchant ID that you didn’t see as much of before  In some cases, you 
might even want to train another model just for this use case 

3. There are labeling issues
Example: A model predicting house prices is showing an extreme discrepancy across price 
distributions for a particular zip code  Zip code has very high importance  Upon further 
inspection, you find that the training data reveals this zip code is being labeled with two 
different city names, such as Valley Village and North Hollywood (the “Hollywood” city name 
yields higher house prices) 

Recommended solution: Highlight the issue to the labeling provider, and provide clarification 
in labeling documentation 

https://arize.com/blog/take-my-drift-away/
https://arize.com/model-drift/'
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To implement full-stack ML observability with performance tracing 
with Arize, sign up for an account today.

For the latest on ML observability best practices and tips, Sign up 
for our monthly newsletter The Drift.

The excitement around machine learning in the last decade has made it possible for ML 
models to get adopted quickly, solving very complex problems with large business impacts  
Machine learning systems are usually built on top of data pipelines and other complex 
engineering systems that feed the models the data needed to make predictions  

However, real-life complexities often mean that an error in the smallest slice can lead to a 
substantial loss of economic value  Today this means that ML engineers must spend a lot of 
their time writing SQL queries and manually dissecting the model until a solution emerges  
There is also a natural tendency to look at explainability as a shortcut  While explainability can 
often help you understand the problem, it is important to have other tools in your arsenal—
particularly ML performance tracing—to get to the bottom of issues  

To recap, the fundamentals of ML performance tracing are:

1. Compare to something you know;

2. Go beyond averages into slices of data; and

3. Root cause and resolve

Ultimately, knowing what information to seek and having good tools that surface the 
information quickly — and in an easily digestible way — can save many hours, dollars,  
and customer relationships 

Conclusion

https://app.arize.com/auth/join?utm_campaign=Q2%202022:%20Blog%20Posts&utm_source=Papers

https://arize.com/blog/?utm_campaign=Q42021%3A%20Survey&utm_source=Survey%20Paper#blog-subscribe-modal
http://www.arize.com
https://twitter.com/arizeai
https://arize.com/blog/?utm_campaign=Q42021%3A%20Survey&utm_source=Survey%20Paper#blog-subscribe-modal
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