

Introduction .. 1

Foundation Models + Deployment .. 2

Common Use Cases ... 3

LLM Observability ..6

LLM Evaluation .. 13

Traces and Spans ..24

Search and Retrieval ... 32

Benchmarking Evaluation of RAG + Chunking Strategy ... 36

Guardrails ...45

Getting Started ...48

Table of contents

LLM Observability 101 | Page 1

Introduction
A new era of AI is taking hold. According to
a recent survey, over two-thirds (66.9%) of
developers and machine learning teams are
planning production deployments of large
language model (LLM) applications in the next
12 months or “as fast as possible” – and 14.1%
are already in production. With deployment
made easier due to abstraction, inherent system
complexity makes it essential that you have a
good understanding of how every element of
the system is performing. This ebook covers how
to develop and roll out LLM applications that are
both reliable and responsible.

LLM Observability 101 | Page 2

Foundation Models

Why Are Foundation Models Growing In Popularity?

What Are the Most Popular Models?

Foundation models are large-scale machine learning models pre-trained on extensive
datasets. These models are trained to learn general-purpose representations across various
data modalities, including text, images, audio, and video. Their key strengths lie in their size,
pre-training, self-supervised learning, generalization, and adaptability.

The emergence of foundation models might appear sudden, but in reality, they are the
outcome of an intricate evolution in the field of AI. Tracing their lineage back to the diverse
techniques, models, and groundbreaking developments in machine learning, these models
represent the pinnacle of AI achievements to date. From the early days of hand-crafted
features to the era of BERT and GPT, foundation models have come a long way. They have
reshaped the AI landscape and are continually sculpting the future of machine learning.

While OpenAI still
dominates with 59.1% of
technical teams relying
on the company’s
LLMs, Meta’s Llama 2
and other alternatives
are becoming more
popular. In the “Other”
category, Google PaLM
2 leads in adoption
(20.7% of those
surveyed), followed by
Databricks (Dolly) at
14.9% and MosaicML
at 5.6%.

https://arize.com/blog-course/unleashing-bert-transformer-model-nlp/

LLM Observability 101 | Page 3

Common Use Cases
What Are the Typical Use Cases for LLMs?
There are many use cases that are common across LLM applications. We’ll look at a
small sampling here.

Chatbots

Since ChatGPT initially introduced the masses to LLMs through its chatbot, this use
case is very common. It consists of the user asking a question, the system retrieving
information to enrich the prompt, and then the LLM generating a response.

LLM Observability 101 | Page 4

Structured Data Extraction

In a structured data extraction use case, the LLM receives unstructured input together
with a schema and outputs a structured representation of the information. This is often
useful in the context of a larger software system.

Summarization

Natural language processing (NLP) has long searched for good summarization
solutions. Many of the traditional extractive and abstractive summarization techniques
have now been superseded by LLMs.

LLM Observability 101 | Page 5

In addition to these, there are many more specialized use cases, like code generation,
web scraping, and tagging and labeling.

LLMs are also employed in more complex use cases like Q&A assistant and chat-
to-pay. These are composed of steps (spans) that achieve a higher-order objective.
Spans can be other LLM use cases, traditional machine learning systems, or non-ML
software-defined tools (like a calculator).

These workflows are useful
but also very complex
because they require
proper orchestration on
multiple systems, any one
of which can have unique
problems. These workflows
do not require much code,
but do not confuse that
brevity for simplicity. Even
a few lines can kick off very
long chains of computation
with multiple opportunities
for error (see inset).

That complexity leads to
the difficulties experienced
by today’s LLM projects
as they progress from
“Twitter Demo” to
customer use.

Other Use Cases

from langchain.chains import RetrievalQA
from langchain.chat_models import ChatOpenAI
from langchain.embeddings import OpenAIEmbeddings
from langchain.retrievers import KNNRetriever

embeddings = OpenAIEmbeddings(model=”text-
embedding-ada-002”)

knn_retriever = KNNRetriever(
 index=vectors,
 texts=texts,
 embeddings=OpenAIEmbeddings(),
)

llm = ChatOpenAI(model_name=”gpt-3.5-turbo”)
chain = RetrievalQA.from_chain_type(
 llm=llm,
 chain_type=”map_reduce”,
 retriever=knn_retriever,
)

https://arize.com/blog-course/traces-spans-large-language-model-orchestration/

LLM Observability 101 | Page 6

What Is LLM Observability?

What Issues Arise With LLMs?

Here are several common issues.

• Hallucination: The model’s objective in training is to predict the next few
characters. Accuracy of the responses is more of a side effect. As such,
hallucinations, or made-up responses not grounded in facts, are common and
unpredictable. You use an LLM as a shortcut, but if you have to double check
everything it says, it may not be that useful. If you don’t check, however, you
may get into real trouble.

• Proliferation of calls: Even solving hallucination issues can lead to greater
problems. For example, one way around the above-mentioned problem is
Reflexion, which asks an LLM to analyze its own results. This technique is
powerful but it makes the already-complicated system even more so. Now
instead of one call, you have a whole chain of calls. This is true at every span,
so for complex use cases we talked about above, there are multiple calls
inside multiple spans.

• Proprietary data: When you add proprietary data to the mix, things get even
more interesting. The reality is that much of the data we need to answer
complex questions is proprietary. Access control systems on LLMs are not
as robust as they are in traditional software. It is possible for proprietary
information to accidentally find its way into a response.

• Quality of response: Response quality can often be suboptimal for other
reasons too. For example the tone can be wrong, or the amount of detail
can be inappropriate. It is very difficult to control the quality of largely
unstructured responses.

• Cost: Then there is the elephant in the room: cost. All of those spans,
Reflexion, and calls to LLMs can add up to a significant bill.

• Third-party models: LLMs accessed through third-party providers can
change over time. The API can change, new models can be added, or new
safeguards can be put in place, all of which may cause models to behave
differently.

• Limited competitive advantage: The bigger problem, perhaps, is that LLMs
are hard to train and maintain. Therefore your LLM model is the same as
that of all of your competitors, so what really differentiates you is prompt
engineering and connection to proprietary data. You want to make sure you
are using them well.

These are hard problems, but fortunately the first step in tackling all of them is
the same: observability.

https://www.reuters.com/legal/new-york-lawyers-sanctioned-using-fake-chatgpt-cases-legal-brief-2023-06-22/
https://arxiv.org/pdf/2303.11366.pdf

LLM Observability 101 | Page 7

LLM Observability vs ML Observability
While large language models are a newer entrant to the ML landscape, they have a lot in
common with older ML systems, so observability operates similarly in both cases.

• Just as in ML observability, embeddings are extremely useful to understanding
unstructured data, and embedding techniques similar to those we have discussed in
the past are even more important in LLMs.

• Understanding model performance and tracking it over time is still as important as
ever. Data drift and model drift are important to understand.

• Data collection (history of prompts/responses) is still very important with LLMs for
understanding drift and fine-tuning models.

But there are some important differences too:

• The model of LLM deployment is very different from more traditional ML. In the vast
majority of cases, you have much less visibility into the model internals because you
are likely using a third-party provider for your LLM.

• Evaluations are fundamentally different since you are evaluating generation and
not ranking. This necessitates a whole new set of tools, some of which are only made
possible by LLMs to begin with.

• If you are using vector stores (and most retrieval cases do), there are unique challenges
that may prevent optimal retrieval and thus produce less-than-ideal prompts.

Agentic workflows and orchestration frameworks like LlamaIndex and LangChain
present their own challenges that require different observability approaches.

What Is LLM Observability?
LLM observability is complete visibility into every layer of an LLM-based software
system: the application, the prompt, and the response.

https://towardsdatascience.com/getting-started-with-embeddings-is-easier-than-you-think-e88b7b10bed1
https://towardsdatascience.com/getting-started-with-embeddings-is-easier-than-you-think-e88b7b10bed1
https://arize.com/blog-course/traces-spans-large-language-model-orchestration/
https://arize.com/resource/llamaindex/
https://arize.com/blog-course/langchain-llm-agent-monitoring/
https://arize.com/llm/

LLM Observability 101 | Page 8

Introducing the Five Pillars of Large Language
Model Observability

Let’s understand the five pillars of LLM observability in order of importance. Each merits its own
research, but here is a quick summary.

LLM Evals

Evaluation is a measure of how well the response answers the prompt. This is the most
important pillar on LLM observability.

LLM Observability 101 | Page 9

You can have an evaluation for individual queries, but we typically start by trying to find
patterns. For example, if you look at embedding visualization for prompts and separate
good responses from bad responses, patterns will begin to emerge.

1. How do you know if the response was good in the first place? There are several ways to
evaluate. You can collect the feedback directly from your users. This is the simplest way
but can often suffer from users not being willing to provide feedback or simply forgetting
to do so. Other challenges arise from implementing this at scale.

2. The other approach is to use an LLM to evaluate the quality of the response for a particular
prompt. This is more scalable and very useful but comes with typical LLM setbacks.

Once you have identified the problem region(s), you can summarize the prompts that are
giving your system trouble. You can do this by reading the prompts and finding similarities
or by using another LLM.

The point of this step is simply to identify that there is a problem and give you your first
clues on how to proceed. To make this process simpler, you can use Arize’s open-sourced
Phoenix framework.

Traces and Spans In Agentic Workflows

For more complex or agentic workflows, it may not be obvious which call in a span or
which span in your trace (a run through your entire use case) is causing the problem.
You may need to repeat the evaluation process on several spans before you narrow
down the problem.

This pillar is largely about diving deep into the system to isolate the issue you are
investigating. This may involve retrieval steps or LLM use case steps.

https://phoenix.arize.com/

LLM Observability 101 | Page 10

Prompt Engineering

Example of Iterating and Comparing Responses Across Prompt Templates in Arize

Prompt engineering is the cheapest, fastest, and often the highest-leverage way to
improve the performance of your application.

This is similar to how humans think. You are going to have a pretty hard time answering
the question “Who is that?” in isolation, but if you get a little more context – “Who is
that on the moon, next to the Apollo 11 landing module?” – the number of reasonable
answers is narrowed down right away.

LLMs are based on the attention mechanism, and the magic behind the attention
mechanism is that it is really good at picking up relevant context. You just need to
provide it.

The tricky part in product applications is that you not only have to get the right prompt,
you also have to try to make it concise. LLMs are priced per token, and doubling the
number of tokens in your prompt template in a scaled application can get really
expensive. The other issue is that LLMs have a limited context window, so there is only
so much context you can provide in your prompt.

https://arize.com/blog-course/attention-mechanisms-in-machine-learning/

LLM Observability 101 | Page 11

Search and Retrieval

The other way to improve performance is with more relevant information being fed in.
This is a bit harder and more expensive but can yield incredible results.

If you can retrieve more relevant information, your prompt improves automatically. The
information retrieval systems, however, are more complex. Perhaps you need a better
embedding? Perhaps you can make retrieval a multi-step process?

To do this, you may first embed the documents by summaries. Then at retrieval time, find
the document by summary first, then get relevant chunks. Or you can embed text at the
sentence level, then expand that window during LLM synthesis. Or maybe you can just
embed the reference to the text or even change how you organize information on the
back end. There are many possibilities to decouple embeddings from the text chunks.

LLM Observability 101 | Page 12

Fine Tuning

Finally, you can fine tune your model. This essentially generates a new model that is more aligned
with your exact usage conditions. Fine tuning is expensive, difficult, and may need to be done
again as the underlying LLM or other conditions of your system change. This is a very powerful
technique, but you should be very clear about your ROI before embarking on this adventure.

There is no universal way to set up your application. There are many different architectures and
patterns, and setting up your application is largely dependent on the particulars, but here are
a few pointers.

• Human feedback: If you are lucky enough to collect user feedback, you should store your
feedback and responses for future analysis. Otherwise you can generate LLM-assisted evals
and store those instead.

• Multiple prompt templates: If you have multiple prompt templates, compare between them.
Otherwise iterate on your prompt template to see if you can improve performance.

• Using retrieval augmented generation (RAG): If you can access the knowledge base, evaluate
if there are gaps in it. Otherwise use prod logs to evaluate if the retrieved content is relevant.

• Chains and agents: Log spans and traces to see where the app breaks. For each span, use the
suggestions from above on human feedback.

• Fine tuning: If you fine tune, find and export example data that can be used for fine tuning.

How To Set Up An Application for Observability

 Source: Andrej Karpathy

LLM Observability 101 | Page 13

Fortunately, we can use the power of LLMs to automate the evaluation. In this section, we will
delve into how to set this up and make sure it is reliable.

The core of LLM evals is AI evaluating AI.

While this may sound circular, we have always had human intelligence evaluate human
intelligence (for example, at a job interview or your college finals). Now AI systems can finally do
the same for other AI systems.

The process here is for LLMs to generate synthetic ground truth that can be used to evaluate
another system. Which begs a question: why not use human feedback directly? Put simply,
because you will never have enough of it.

Getting human feedback on even one percent of your input/output pairs is a gigantic feat. Most
teams don’t even get that. But in order for this process to be truly useful, it is important to have
evals on every LLM sub-call, of which we have already seen there can be many.

Let’s explore how to do this.

LLM Evaluation
Why Is LLM Evaluation Needed?
As the applications multiply, so does the importance of measuring the performance of LLM-
based applications. This is a nontrivial problem for several reasons: user feedback or any other
“source of truth” is extremely limited and often nonexistent; even when possible, human
labeling is still expensive; and it is easy to make these applications complex.

LLM Observability 101 | Page 14

LLM Model Evals

You might have heard of LLM evals. This term gets used in many different ways that all
sound very similar but actually are very different. One of the more common ways it gets
used is in what we will call LLM model evals. LLM model evals are focused on the overall
performance of the foundational models. The companies launching the original customer-
facing LLMs needed a way to quantify their effectiveness across an array of different tasks.

In this case, we are evaluating two different open source foundation models. We are
testing the same dataset across the two models and seeing how their metrics, like
hellaswag or mmlu, stack up.

LLM Model Evals versus LLM System Evals

LLM_model_evals != LLM_System_evals

LLM Observability 101 | Page 15

One popular library that has LLM model evals is the OpenAI Eval library, which was originally
focused on the model evaluation use case. There are many metrics out there, like HellaSwag
(which evaluates how well an LLM can complete a sentence), TruthfulQA (measuring truthfulness
of model responses), and MMLU (which measures how well the LLM can multitask). There’s even
a leaderboard that looks at how well the open-source LLMs stack up against each other.

LLM System Evals

Up to this point, we have discussed LLM model evaluation. In contrast, LLM system evaluation
is the complete evaluation of components that you have control of in your system. The most
important of these components are the prompt (or prompt template) and context. LLM system
evals assess how well your inputs can determine your outputs.

LLM system evals may, for example, hold the LLM constant and change the prompt template.
Since prompts are more dynamic parts of your system, this evaluation makes a lot of sense
throughout the lifetime of the project. For example, an LLM can evaluate your chatbot responses
for usefulness or politeness, and the same eval can give you information about performance
changes over time in production.

Hugging Face OpenLLM Leaderboard

LLM Observability 101 | Page 16

In this case, we are evaluating two different prompt templates on a single foundational model.
We are testing the same dataset across the two templates and seeing how their metrics like
precision and recall stack up.

When To Use LLM System Evals versus LLM Model Evals: It Depends On Your Role

There are distinct personas who make use of LLM evals. One is the model developer or an
engineer tasked with fine-tuning the core LLM, and the other is the practitioner assembling
the user-facing system.

There are very few LLM model developers, and they tend to work for places like OpenAI,
Anthropic, Google, Meta, and elsewhere. Model developers care about LLM model evals, as
their job is to deliver a model that caters to a wide variety of use cases.

For ML practitioners, the task also starts with model evaluation. One of the first steps in
developing an LLM system is picking a model (i.e. GPT 3.5 vs 4 vs Palm, etc.). The LLM model
eval for this group, however, is often a one-time step. Once the question of which model
performs best in your use case is settled, the majority of the rest of the application’s lifecycle
will be defined by LLM system evals. Thus, ML practitioners care about both LLM model
evals and LLM system evals but likely spend much more time on the latter.

LLM Observability 101 | Page 17

LLM System Evaluation Metrics Vary By Use Case
Having worked with other ML systems, your first question is likely this: “What should
the outcome metric be?” The answer depends on what you are trying to evaluate.

• Extracting structured information: You can look at how well the LLM extracts
information. For example, you can look at completeness (is there information in the
input that is not in the output?).

• Question answering: How well does the system answer the user’s question? You can
look at the accuracy, politeness, or brevity of the answer—or all of the above.

• Retrieval Augmented Generation (RAG): Are the retrieved documents and final
answer relevant?

As a system designer, you are ultimately responsible for system performance, and so
it is up to you to understand which aspects of the system need to be evaluated. For
example, If you have an LLM interacting with children, like a tutoring app, you would
want to make sure that the responses are age-appropriate and are not toxic.

The most common evaluations we see being employed today are relevance,
hallucinations, question-answering accuracy, and toxicity. Each one of these evals will
have different templates based on what you are trying to evaluate.

How To Get AI To Evaluate AI

There are two distinct steps to the process of evaluating your LLM-based system
with an LLM. First, establish a benchmark for your LLM evaluation metric. To do
this, you put together a dedicated LLM-based eval whose only task is to label data
as effectively as a human labeled your “golden dataset.” You then benchmark your
metric against that eval. Then, run this LLM evaluation metric against results of your
LLM application (more on this below).

How To Build An LLM Eval
The first step, as we covered above, is to build a benchmark for your evaluations.

To do that, you must begin with a metric best suited for your use case. Then, you
need the golden dataset. This should be representative of the type of data you expect
the LLM eval to see. The golden dataset should have the “ground truth” label so that
we can measure performance of the LLM eval template. Often such labels come
from human feedback. Building such a dataset is laborious, but you can often find a
standardized one for the most common use cases.

LLM Observability 101 | Page 18

Then you need to decide which LLM you want to use for evaluation. This could be a
different LLM from the one you are using for your application. For example, you may be
using Llama for your application and GPT-4 for your eval. Often this choice is influenced
by questions of cost and accuracy.

Now comes the core component that we are trying to benchmark and improve: the
eval template. If you’re using an existing library like OpenAI or Phoenix, you should
start with an existing template and see how that prompt performs.

If there is a specific nuance you want to incorporate, adjust the template accordingly
or build your own from scratch. Keep in mind that the template should have a clear
structure. Be explicit about the following:

1. What is the input? In our example, it is the documents/context that was retrieved and
the query from the user.

2. What are we asking? In our example, we’re asking the LLM to tell us if the document
was relevant to the query

3. What are the possible output formats? In our example, it is binary relevant/irrelevant,
but it can also be multi-class (e.g., fully relevant, partially relevant, not relevant).

LLM Observability 101 | Page 19

You now need to run the eval across your golden dataset. Then you can generate metrics
(overall accuracy, precision, recall, F1-score, etc.) to determine the benchmark. It is important to
look at more than just overall accuracy. We’ll discuss that below in more detail.

If you are not satisfied with the performance of your LLM evaluation template, you need to
change the prompt to make it perform better. This is an iterative process informed by hard
metrics. As is always the case, it is important to avoid overfitting the template to the golden
dataset. Make sure to have a representative holdout set or run a k-fold cross-validation.

https://arize.com/blog-course/precision-vs-recall/
https://arize.com/blog-course/f1-score/
https://arize.com/blog/cross-validation-machine-learning/

LLM Observability 101 | Page 20

Finally, you arrive at your benchmark.
The optimized performance on the golden
dataset represents how confident you can be on
your LLM eval. It will not be as accurate as your
ground truth, but it will be accurate enough, and
it will cost much less than having a human labeler
in the loop on every example.

Why Is It Important To Use Precision and Recall When
Benchmarking An LLM Prompt Template?
The industry has not fully standardized best practices on LLM evals. Teams commonly do not
know how to establish the right benchmark metrics.

Overall accuracy is used often, but it is not enough.

This is one of the most common problems in data science in action: very significant class
imbalance makes accuracy an impractical metric.

Thinking about it in terms of the relevance metric is helpful. Say you go through all the trouble
and expense of putting together the most relevant chatbot you can. You pick an LLM and
a template that are right for the use case. This should mean that significantly more of your
examples should be evaluated as “relevant.” Let’s pick an extreme number to illustrate the
point: 99.99% of all queries return relevant results. Hooray!

Now look at it from the point of view of
the LLM eval template. If the output was
“relevant” in all cases, without even looking
at the data, it would be right 99.99% of the
time. But it would simultaneously miss all of
the (arguably most) important cases — ones
where the model returns irrelevant results,
which are the very ones we must catch.

In this example, accuracy would be high,
but precision and recall (or a combination of
the two, like the F1 score) would be very low.
Precision and recall are a better measure of
your model’s performance here.

The other useful visualization is the
confusion matrix, which basically lets you
see correctly and incorrectly predicted
percentages of relevant and
irrelevant examples.

In this example, we see that the highest percentage of
predictions are correct: a relevant example in the golden

dataset has an 88% chance of being labeled as such by our
eval. However, we see that the eval performs significantly
worse on “irrelevant” examples, mislabeling them more

than 27% of the time.

LLM Observability 101 | Page 21

How To Run LLM Evals On Your Application
At this point you should have both your LLM application and your tested LLM eval. You
have proven to yourself that the eval works and have a quantifiable understanding of its
performance against a golden dataset.

Now we can actually use our eval on our application. This will help us measure how well our
LLM application is doing and figure out how to improve it.

The LLM system eval runs your entire system with one extra step. For example:

1. You retrieve your input docs and add them to your prompt template, together with sample
user input.

2. You provide that prompt to the LLM and receive the answer.

3. You provide the prompt and the answer to your eval, asking it if the answer is relevant to
the prompt.

It is a best practice not to do LLM evals with one-off code but rather a library that has built-in
prompt templates. This increases reproducibility and allows for more flexible evaluation where
you can swap out different pieces.

These evals need to work in three different environments:

1. Pre-production when you’re doing the benchmarking.

2. Pre-production when you’re testing your application. This is somewhat similar to the offline
evaluation concept in traditional ML. The idea is to understand the performance of your
system before you ship it to customers.

3. Production when it’s deployed. Life is messy. Data drifts, users drift, models drift, all in
unpredictable ways. Just because your system worked well once doesn’t mean it will do so
on Tuesday at 7 p.m. Evals help you continuously understand your system’s performance
after deployment.

LLM Observability 101 | Page 22

Questions To Consider
How many rows should you sample?

The LLM-evaluating-LLM paradigm is not magic. You cannot evaluate every example you have
ever run across—that would be prohibitively expensive. However, you already have to sample
data during human labeling, and having more automation only makes this easier and cheaper.
So you can sample more rows than you would with human labeling.

Which evals should you use?

This depends largely on your use case. For search and retrieval, relevancy-type evals work best.
Toxicity and hallucinations have specific eval patterns.

Some of these evals are important in the troubleshooting flow. Question-answering accuracy
might be a good overall metric, but if you dig into why this metric is underperforming in your
system, you may discover it is because of bad retrieval, for example. There are often many
possible reasons, and you might need multiple metrics to get to the bottom of it.

What model should I use?

It is impossible to say that one model works best for all cases. Instead, you should run model
evaluations to understand which model is right for your application. You may also need to
consider tradeoffs of recall vs. precision, depending on what makes sense for your application. In
other words, do some data science to understand this for your particular case.

LLM Observability 101 | Page 23

In summary, being able to evaluate the performance of your application is very important when
it comes to production code. In the era of LLMs, the problems have gotten harder, but luckily
we can use the very technology of LLMs to help us in running evaluations. Such evaluation
should test the whole system and not just the underlying LLM model—think about how much
a prompt template matters to user experience. Best practices, standardized tooling, and
curated datasets simplify the job of developing LLM systems.

Which model to use often depends on your task

LLM Observability 101 | Page 24

Traces and Spans
LLM orchestration frameworks like LlamaIndex, Microsoft’s Semantic Kernel and
LangChain offer flexible data frameworks to connect your own private data to LLMs in
order to leverage the wave of the latest generative AI advancements. In the emerging
LLM toolchain (see below), these frameworks are in the center of the LLMOps system
between various LLM application tools.

The Emerging LLM Toolchain

LLM orchestration frameworks are trying to enable developers with the necessary tools
to build LLM applications and LLM observability is designed to manage and maintain
these applications in production. This orchestration process includes many different
components including: programmatic querying, retrieving contextual data from a
vector database, and maintaining memory across LLM and API calls. Whether you are
using a callback system from a programming framework for LLMs (like LangChain or
LlamaIndex) or creating a bespoke system, LLM applications require observability to
make sure each component is performing optimally in production.

LLMs

LLM
Toolchain

3rd party
Models

Tracing LLM Applications: Who Should Be Tackling
This Within AI Teams?
Currently there are a variety of industries trying to implement LLMs into production,
but who within an AI organization is best equipped for this challenge? LLMOps
Engineer is not currently a title we see being advertised, but LLM-powered systems
are being built for a variety of use cases across industries, so who are the LLM
developers? Today this is overwhelmingly the skilled software engineers who
understand highly scalable and low-latency systems.

AI Memory Orchestration Evaluation

Proprietary Data
and LLM Memory

LLM App
Frameworks LLM Observability

Vertex AI
Matching Engine

LLM Observability 101 | Page 25

Traditionally data scientist, AI researcher, and machine learning engineer have been the
most common roles for those developing AI algorithms and ML evaluation tools. However,
we have seen a recent shift that is putting the power of AI in the hands of developers with
strong software capabilities. With advanced open source libraries and models, developers
have been able to integrate software together to create new AI applications without
the need of data science and ML understanding. Data engineers, software engineers
and other developers will have an advantage in LLM observability with their familiarity
not only in the terminology, but also troubleshooting API callbacks, when compared to
data scientists and ML engineers. However, since the fields of MLOps and LLMOps are
still being created, tested and iterated upon, the time is right for anyone interested in
generative AI to start learning about and implementing LLM systems now!

For software engineers that work with distributed systems, terms like “spans,” “traces,”
and “calls” are well known. While there are parallels between the worlds of network
observability, distributed systems, and LLM observability there are also nuances with
generative AI terms. Since LLM observability isn’t just about tracking API calls, but about
evaluating the LLM’s performance on specific tasks, there are a variety of span kinds and
attributes that can be filtered on, in order to troubleshoot a LLMs’ performance.

Before walking through these workflows in detail, let’s give the scenario that you are a
Software Engineer at an e-commerce company which recently pushed an LLM-powered
chatbot into production. Your chatbot, which is used to interact with customers who have
purchased from your company’s website, uses a search and retrieval system to create
responses for the customer (see Figure 1 below).

Note that the callback sequence you will be looking at depends on how your LLM
orchestration layer is organized, whether you are using a LLM framework (like LlamaIndex
and LangChain) or you create a bespoke framework. For the following callback tracing
workflows, let’s use the LLM orchestration framework provided by LlamaIndex that
accepts any input prompt over your data and returns a knowledge-augmented response.
Please refer to Table 1 below for related terminology in the following workflows.

LLM Observability 101 | Page 26

Definition of LLM Observability Terms for Reference

Term LLM Observability Definition*

Traces

Traces represent a single invocation of an LLM application. For
example, when a chain is run or a query engine is queried, that
is a trace. Another way to think of traces is as a sequence of
spans tied together by a trace ID

Spans

Spans are units of execution that have inputs and outputs
that a builder of an LLM application may care to evaluate.
There are different kinds of spans, including chain spans, LLM
spans, and embedding spans, that are differentiated by various
kinds of attributes. For example LLM span type: Attributes =
Temperature, Provider, Max Tokens, …

Tools

Tool as the defining feature of an agent, an arbitrary function
(e.g., a calculator, a piece of code to make an API call, a tool to
query a SQL database) that an LLM can choose to execute or not
based on the input from a user or the state of an application.

Parent-Child
Relationships Between
Spans

Every trace has a hierarchical structure. The top span, which is
the entry point, has no parent. However, as you delve deeper
into the system’s operations, you’ll find child spans that are
initiated by their parent spans.

Conversations

Conversations are a series of traces and spans tied together by a
Conversation ID. These occur across traces without any parallel
operations and contain a single back and forth conversation
between the LLM and a given user.

*Note: While traces and spans are a familiar concept in intra/network observability, they differ
in many ways for LLM observability. For example, the concepts of evals, agents, embeddings
and LLMs as span types is nowhere to be found in the infra world. In APM (application
performance monitoring) a transaction trace gives a detailed snapshot of a single transaction
in your application, this is similar to a run in a LLM application system. While you will see
similar timing information and similar annotations on spans (marking them with key-value
pair attributes to use for visualization) the semantic conventions that are being established
for the types of spans, what attributes should be present on these types, and the appropriate
evals for them are all new for LLM tracing.

LLM Observability 101 | Page 27

A top-down approach can be thought of starting with the big picture of the LLM
use case and then getting into specifics of the execution if the performance is
not satisfactory. For example with your e-commerce LLM powered chatbot into
production. Your chatbot is interacting with customers in a series of back and forth
conversations. Some customers might have only one question one time, while other
customers may have a series of conversations that stretch over months. Either way,
every time a question is asked, your LLM system is queried to produce a response for
your user and each run produces an individual trace (with a series of spans).

In order to troubleshoot performance top down you can take all unsatisfactory
conversations (labeled as such due to user feedback or a separate evaluation system),
then rank them from worst to best performance, and filter down into the individual
traces, and then spans to see where the major problem is hidden.

For example, let’s say on Wednesday you get an alert that your overall chatbot
performance is operating at 70% satisfactory (which is lower than the accepted 80%)

When you execute a LLM run, the process of interacting with your selected LLM is documented
in a callback system by a trace. In this trace a span can refer to any unit of execution, you may
annotate a span with a specific name (agent, LLM, tool, embedding) or a general term like a
chain (which can refer to any process that doesn’t have its own span kind).

Now let’s go through two troubleshooting workflows that you can use to break down each call
you are making to your LLM – these will be the top-down and bottom-up LLM workflows.

Option 1: Top-Down LLM Workflows

LLM Observability 101 | Page 28

The bottom-up workflow can also be thought of as a discovery workflow where you
are at the local level to filter on individual spans. In the same way you might think
about metadata or tags, you can filter by specific spans to troubleshoot performance
in your LLM use-cases. For example you can filter on embedding or LLM spans to see
performance, latency and token account appear as expected. So if you are curious
on how your outputs, prompts and performances are for your agents, LLMs, vector
databases and more, use a bottom-up approach to evaluate individual components of
your LLM system. This workflow can also link back any underperforming span type to
their corresponding traces and conversations.

and this chatbot was operating at 85% last week. Clearly, there are some unhappy
conversations. Now, to troubleshoot these underperforming conversations you first
filter down on the worst performing conversations and then filter on the traces and
span types that are underperforming to see if there is an issue in the execution chain.
As it turns out, there is an irrelevant output from a span type (see below) on every one
of these underperforming conversations, most likely due to missing relevant content.
You remembered your team launched a website update on Tuesday and saw that
the outputs were unsatisfactory because they were using information about the old
website. This issue can be ultimately resolved by adding context to your LLM for how
to add items to cart via the updated website.

Option 2: Bottom-Up LLM Workflows

LLM Observability 101 | Page 29

Let’s explore a specific trace for a search and retrieval use case that will look and evaluate the
chain, LLM, tool, and retriever spans individually within a run.

Chain

This is the most general kind of span, it has an input
and an output and chains together all the calls. A
chain can query, synthesize and provide templating.
For example: If I ask your company’s chatbot “Can I
copy a dashboard?” then the chain (query) might:

INPUT: Can I copy a dashboard

OUTPUT: Yes, you can copy a dashboard

Note that the output is achieved after the
embedding and retrieve span, as seen from the
trace details.

LLM Span Types and Their Functions

Types of spans and the role they play in a LLM callback system.

LLM Observability 101 | Page 30

Embedding

For embedding queries/questions — like embeddings that correspond to relevant documents
from a vector store, for example.

Retriever

Responsible for retrieving relevant data. For example: retrieving all the relevant documents
that were selected using their corresponding embeddings from the vector store.

{
 “embedding”: {
 “model_name”: “text-embedding-ada-002”,
 “embeddings”: [
 {
 “embedding.vector”: [
 -0.018075328320254816
 -0.002687335712835192
 -0.010201605968177319
],
 “embedding.text”: “Can I copy a dashboard?”
 }
]
 },
“__computed__”: {
 “latency_ms”: 187.385
}

“input”: {
 “value”: “Can I copy a dashboard?”
},
“retrieval”: {
 “documents”: [
 {
 “document.id”: “873ef3a3-6938-4734-b10b-d29be152579”
 “document.score”: “0.8101961612701416”
 “document.content”: “\nTemplates are designed as starting points
for dashboard and model analysis. Once a dashboard is created from a
template, it can be edited and customized as desired. \n\n!\n\n”

LLM Observability 101 | Page 31

Note that in addition to the
provided output, key performance
metrics like token count and
latency were also returned.

LLM

Represents the LLM’s operations. Remember, we are using a search and retrieval workflow for
our chatbot as seen from the embedding and retrieval steps. Now that the relevant documents
have been surfaced the LLM is called to synthesize the information from the documents to
produce the correct answer for the input query.

Attributes of the LLM span like prompts and LLM model version (“model_name”: “gpt-
3.5-turbo”) are defined, the LLM will use that information to generate an output from the
provided background documentation.

For example:

Additional Filtering and Alerting
Now that we have seen workflows for exploring conversations, traces and spans, let’s talk about
the methods of troubleshooting these workflows with filtering and monitors. If you are familiar
with ML observability, you would likely think about setting monitors with an upper bound on
latency and token count of your LLM system (so you are able to surface abnormally high token
counts for each trace, and poor latency times for traces and spans). This is a good starting point,
but only the tip of the iceberg in terms of how deep you can start to understand your LLM system.

Remember you can even create your own spans
and a bespoke or modified LLM orchestration
layer. You can add span kinds that correspond to
specific LLMs, conversations, vector databases,
and evaluations. At which point you can filter
on customer IDs, conversation ID, performance
metrics, user feedback and more.

“output”: {
 “value”: “assistant: Yes, you can copy a
dashboard.”
 },
 “__computed__”: {
 “latency_ms”: 1127.944,
 “cumulative_token_count_total”: 224,
}

If you are interested in testing out for
yourself what attributes span types have,
and why are attributes useful, try out our
OpenInference standard that the Arize
team is currently working on.

Inputs/Outputs and Attributes

https://github.com/Arize-ai/open-inference-spec

LLM Observability 101 | Page 32

Search and Retrieval
LLMs and Proprietary Data: When Do You Need
Search and Retrieval?
While LLMs can provide a broad base of
knowledge, they are fundamentally limited
by the information they have been trained
on. An LLM won’t know the specifics of your
product documentation or understand the
unique workings of your product. If there are
updates or changes to your product, an LLM
won’t automatically have that information
unless it’s included in its training data.

Development: How Search and Retrieval Works
Let’s consider the common scenario of developing a customer support chatbot using
an LLM. Usually, teams possess a wealth of product documentation, which includes
a vast amount of unstructured data detailing their product, frequently asked
questions, and use cases.

This data is broken down into pieces through a process called “chunking.” How you
chunk data matters, and in the next piece of our “Build Your Own Chatbot” course,
we’ll dig into chunking strategies and evaluation methods.

After the data is broken down, each chunk is assigned a unique identifier and
embedded into a high-dimensional space within a vector database. This process
leverages advanced natural language processing techniques to understand the
context and semantic meaning of each chunk.

When a customer’s question comes in, the LLM uses a retrieval algorithm to quickly
identify and fetch the most relevant chunks from the vector database. This retrieval
is based on the semantic similarity between the query and the chunks, not just
keyword matching.

The picture above shows how search and retrieval is used with a prompt template
(4) in order to generate a final LLM prompt context. The above view is the search and
retrieval LLM use case in its simplest form: a document is broken into chunks, these
chunks are embedded into a vector store, and the search and retrieval process pulls
on this context to shape LLM output.

LLM Observability 101 | Page 33

This approach offers a number of advantages. First, it significantly reduces the time and
computational resources required for the LLM to process large amounts of data, as it
only needs to interact with the relevant chunks instead of the entire documentation.

Second, it allows for real-time updates to the database. As product documentation
evolves, the corresponding chunks in the vector database can be easily updated. This
ensures that the chatbot always provides the most up-to-date information.

Finally, by focusing on semantically relevant chunks, the LLM can provide more precise
and contextually appropriate responses, leading to improved customer satisfaction.

Production: Common Problems With Search and
Retrieval Systems
While the search and retrieval method greatly enhances the efficiency and accuracy of
LLMs, it’s not without potential pitfalls. Identifying these issues early can prevent them
from impacting user experience.

One such challenge arises when a user inputs a query that doesn’t closely match any
chunks in the vector store. The system looks for a needle in a haystack but finds no
needle at all. This lack of match, often caused by unique or highly specific queries,
can leave the system to draw on the “most similar” chunks available – ones that aren’t
entirely relevant.

LLM Observability 101 | Page 34

In turn, this leads to a subpar response from the LLM. Since the LLM depends on
the relevance of the chunks to generate responses, the lack of an appropriate match
could result in an output that’s tangentially related or even completely unrelated to
the user’s query.

Irrelevant or subpar responses from the LLM can frustrate users, lowering their
satisfaction and ultimately causing them to lose trust in the system and product as a
whole. Monitoring three main things can help prevent these issues:

Query Density (Drift): Query density refers to how well user queries are covered by
the vector store. If query density drifts significantly, it signals that our vector store may
not be capturing the full breadth of user queries, resulting in a shortage of closely
associated chunks. Regularly monitoring query density enables us to spot these gaps
or shortcomings. With this insight, we can augment the vector store by incorporating
more relevant chunks or refining the existing ones, improving the system’s ability to
fetch data in response to user queries.

Ranking Metrics: These metrics evaluate how well the search and retrieval system
is performing in terms of selecting the most relevant chunks. If the ranking metrics
indicate a decline in performance, it’s a signal that the system’s ability to distinguish
between relevant and irrelevant chunks might need refinement.

User Feedback: Encouraging users to provide feedback on the quality and
relevance of the LLM’s responses helps gauge user satisfaction and identify areas for
improvement. Regular analysis of this feedback can point out patterns and trends,
which can then be used to adjust your application as necessary.

Refinement: How to Optimize and Improve Search
and Retrieval
Optimization of search and retrieval processes should be a constant endeavor
throughout the lifecycle of your LLM-powered application, from the building phase
through to post-production.

During the building phase, attention should be given to developing a robust testing
and evaluation strategy. This approach allows you to identify potential issues early on
and optimize your strategies, forming a solid foundation for the system.

Key areas to focus on include:

• Chunking Strategy: Evaluating how information is broken down and processed
during this stage can help highlight areas for improvement in performance.

• Retrieval Performance: Assessing how well the system retrieves information can
indicate if you need to employ different tools or strategies, such as context ranking
or HYDE.

LLM Observability 101 | Page 35

Upon release, optimization efforts should continue as you enter the post-production
phase. Even after launch, with a well-defined evaluation strategy, you can proactively
identify any emerging issues and continue to improve your model’s performance.
Consider approaches like:

• Expanding your Knowledge Base: Adding documentation can significantly
improve your system’s response quality. An expanded data set allows your LLM to
provide more accurate and tailored responses.

• Refining Chunking Strategy: Further modifying the way information is broken
down and processed can lead to marked improvements.

• Enhancing Context Understanding: Incorporating an extra ‘context evaluation’ step
helps the system incorporate the most relevant context into the LLM’s response.

Specifics on these and other strategies for continuous optimization will be detailed
in the following sections of this course. Remember, the goal is to create a system that
not only meets users’ needs at launch but also evolves with them over time.

LLM Observability 101 | Page 36

Benchmarking Evaluation of LLM Retrieval
Augmented Generation
Experiment Context & Overview of Findings
The primary source of data in our experiment is product documentation, which is chunked and
seeded into a vector store. With a set of potential user questions ranging from general inquiries to
specific questions about product features, the system produces outputs based on these queries
which are in turn evaluated by the open source Phoenix LLM evals library. Key metrics include:

• Precision of Context Retrieved: How relevant and accurate is the information retrieved from
the vector store when posed with a query?

• Accuracy of the LLM Output: Post-retrieval, how coherent and contextually accurate are the
chatbot’s responses?

• System Latency: Given that response time can significantly impact user experience, how long
does the system take to provide output?

This section is an early attempt to add a rigorous testing layer to the latest LLM retrieval
solutions. It includes both results and test scripts (notebook with these scripts to see an
example of how they are run here) to parameterize retrieval on your own docs, determine
performance with LLM evaluations and provide a repeatable framework to reproduce results.

The following takeaways are based on testing on the aforementioned product documentation
(each is explored in greater depth below).

Chunk Sizes

Generally, chunk sizes of 300/500 tokens seem to a good target; going bigger has negative results.

Retrieval Algorithms

Retrieval algorithms have a latency and value tradeoff — if you have user interactivity
requirements, you are likely better off sticking to the vanilla, simple approach. If accuracy is
paramount and time does not matter, the fancier retrieval algorithms such as re-ranking or
HyDE can markedly improve precision.

On K size

4–6 (or even lower) seems optimal trade off for performance and results. Given latency
considerations, 4 might be the best bet.

Latency

Latency scales quickly with increasing K and retrieval method complexity.

Your Mileage May Vary

As always, it’s crucial to conduct your own experiments to determine the best parameters for
your specific use case.

https://docs.arize.com/phoenix/llm-evals/running-pre-tested-evals
https://github.com/Arize-ai/phoenix/blob/main/scripts/rag/llama_index_w_evals_and_qa.py
https://colab.research.google.com/drive/1Siufl13rLI-kII1liaNfvf-NniBdwUpS?usp=sharing

LLM Observability 101 | Page 37

What Is “K”

One of the most important
parameters to consider is K, the
number of returned chunks
from the vector store. The
vector store returns chunks of
context, and those contexts can
be returned a number at a time
in order of similarity.

The above figure shows a
sweep of K sizes 4, 5, and 6
across two retrieval approaches.
For example, in the case K=6,
six chunks of text are returned
of that specific token size.
It is expected that as you
increase K for a fixed size set
of relevant documents, that
precision at K will drop. The
above results do imply we
are returning more relevant
documents as we increase K.

Precision at k is the number
of relevant items in the top k
divided by k. If there is a fixed
number of relevant items, and
k increases while the number
of relevant items in the top k
remains constant or increases
more slowly than k, then
Precision at k will decrease.

Parameters: Optimizing RAG Settings

Sweep of Chunk Sizes, Mean Average Precision at k
(graphs by authors)

LLM Observability 101 | Page 38

Mean Reciprocal Rank of
Retrieval

Another way we can look at
retrieval results is look at
mean reciprocal rank (MRR),
included below:

The MRR mimics the retrieval
results of the precision @k,
about equal retrieval results
with a slight edge to chunk =
500/1000 and k=4.

It’s worth noting that our
dataset has a number of
cases built where there are
questions the system can’t
answer. Zero retrieval in the
dataset is expected for those
questions. We have plots in the
appendix removes those zero
retrieval questions. It skews the
numbers lower for all metrics
but represents a real world
scenario we see in practice.

At first glance the above results
imply we should consider as
high a K as possible — but
we will find looking at other
numbers, we will find the lower
K of 4/6 a better choice.

The above shows that as we
increase K from 4 to 10, our
latency almost doubles for
the normal ranking method
and skyrockets for re-ranking
approaches. Most direct
user experiences would lend
themselves to the faster
experience, say K=4, unless the
performance metric makes a
strong case for something else.

MRR (diagrams by author)

Median Latency on K Sizes (graphs by authors)

LLM Observability 101 | Page 39

Chunking

Overview Basic Chunking Strategies

How you chunk data can be extremely important to the success of your search and
retrieval efforts. Here are a few prevailing strategies for background.

• Uniform chunking: Breaks down data into consistent sizes, often defined by a set
number of tokens. 1 token is about 4 characters in English. While this strategy is
straightforward, it risks dividing individual pieces of information across multiple
chunks, which might lead to incomplete or incorrect responses.

• Sentence-based chunking: Breaks down data on structural components like periods
or new line characters. This strategy could do a better job of segmenting information,
but again risks splitting information across multiple chunks. Some more advanced
NLP libraries can help make divisions on these characters while preserving context.

• Recursive chunking: Divides the text and then continuously divides the resulting
chunks until they match defined size or structure conditions. While it can produce
more contextually coherent chunks, the method is more resource-intensive than
the others.

Choosing Chunk Size

Regardless of the strategy used to split chunks, choosing the size of the chunks can
have a dramatic impact on the precision of system output. Smaller chunks might lead
to only the most contextually relevant data coloring a chatbot’s output, but details that
could have provided more context might be lost to adjacent chunks. Larger chunks
might capture all relevant information to a query but could also contain irrelevant
information, leading to less precise output.

What do the benchmark metrics tell us about chunk size?

The results of our evals on question-and-answer correctness show that sending too
much information to the LLM’s context window causes issues. When chunk size
becomes excessively large, such as exceeding 1000 tokens, we observe a decline in
response accuracy.

https://twitter.com/jerryjliu0/status/1693421308674289822?s=20

LLM Observability 101 | Page 40

The graph above shows answer percent incorrect the larger the number the worse the
results. There seems to be a sweet spot somewhere in between the smaller context of 100
tokens and the larger contexts of 1000 tokens.

Given the results so far we are leaning toward K = 4 and Chunk Size = 300/500.

Advanced Chunking Strategies

To navigate the aforementioned tradeoffs between large and small chunk sizes, different
strategies have been developed to get the best of both worlds: the precise semantic
meanings captured by small chunks and the overarching context of large chunks.

Langchain’s and LlamaIndex’s parent document retriever systems address this with a
two-fold approach. Initially, the system matches user queries to relevant information in
the vector store using precise, semantically-rich smaller chunks. Then, once the small
chunks are identified, the system retrieves larger chunks that contain the identified
smaller chunks as well as surrounding text. This strategy ensures that while the relevant
information is pinpointed with accuracy, the delivered response is enriched by the
broader context of the corresponding larger chunk.

https://twitter.com/zhanghaili0610/status/1692887244745388125?s=20
https://twitter.com/clusteredbytes/status/1691143792831639556?s=20

LLM Observability 101 | Page 41

Embedding

After chunking our data, the next step is to transform these text chunks into a format that
the retrieval-based chatbot can understand and use (embedding).

Off-the-shelf embedding models exist for this, or training your own model might be the
way to go. We find teams typically go with the embedding option available to them based
on their companies’ data privacy needs and LLM vendor choice. If you use OpenAI, Ada-2
is great; if you have Google, Gecko is also a good option. In cases where you need an OSS
embedding model, a number are available.

In the stage of just getting things working, simple embedding models can be fine. BERT
embeddings are still used by many teams. As you look to really improve your results,
the retrieval steps dictated by the embeddings, is the area that most teams can
control the most.

Fine-tuning on embeddings is something teams are doing to improve their retrieval
results. The OpenAI Ada-2 models currently don’t support fine tuning so the majority of
use cases of improving embedding retrieval is based on OSS models or fine tuning done
outside of OpenAI.

Again, there is no replacement for experimentation. Testing different models and
configurations on your specific dataset is the best way to find your optimal solution.

Retrieval: Comparing Search Methods
After your data is chunked and embedded in your vector database, there are several
techniques we can use to augment the retrieval process.

Multiple Retrievals and Reranking

Instead of retrieving only the most relevant chunk for your knowledge base, you can
design your system to return a set number of the most relevant chunks in your database.
Once you’ve retrieved this potentially relevant data, an LLM can rank the retrieved chunks
based on its judgment of how relevant they are to the user’s query. Through this process,
your system casts a wider net, returning multiple potentially relevant chunks before
deciding which should be used to inform the ultimate output.

Self-Querying

When handed a question in natural language, a self-querying system uses an LLM to craft
a more structured, standardized inquiry format — which it then runs against its vector
store. This allows not only for semantic matching against saved documents but also for
extracting and applying specific filters based on the nuances of the initial question.

https://openai.com/blog/new-and-improved-embedding-model

LLM Observability 101 | Page 42

Multiple Source Retrieval

Several RAG system frameworks already allow users to connect multiple databases to
their system. In practice this could look like an internal system detailing your codebase
having access to technical documentation, ticketing, relevant communications, or
anything else necessary to handle user input.

Multi Query Retrieval

Document retrieval can be finicky, with results shifting based on minor changes in
a query’s content. To mitigate this, the system expands on the user’s initial input,
producing a range of related queries to capture different angles. Each variant then
extracts its own batch of pertinent documents. These distinct batches are then pooled
together, offering a comprehensive and consistent array of relevant documents.

Hypothetical Document Embeddings (HyDE)

This advanced strategy reframes retrieval as a two-step process: one part generative,
one part comparative.

The generative stage begins with the query being inputted into a large language
model. This model is then given a directive to “create a document that addresses the
question.” This generated document doesn’t have to be real or even entirely factual. It’s
a hypothetical representation of what an appropriate answer might look like.

Once the hypothetical document is constructed an embedding model translates this
fictitious document into an embedding vector. It’s expected that the model would filter
out any unnecessary details, acting as a compression tool that retains the crux while
leaving out the fluff.

The vector is then matched against the established vector store to find the most fitting
real-world, pre-existing documents. What’s interesting here is that HyDE doesn’t
explicitly model or compute the similarity score between the query and the returned
document. The process instead focuses on natural language understanding and
generation tasks, with retrieval effectively transformed into these two components.

https://twitter.com/hwchase17/status/1690780072830201856?s=20
https://twitter.com/clusteredbytes/status/1690796438811201538?s=20
https://arxiv.org/abs/2212.10496

LLM Observability 101 | Page 43

HyDE, HyDE w/ re-rank, re-rank and Original: Chunk 100–300 (graphs by authors)

In looking at the above example, the HyDE with re-rank does outperform most of
the other options, but it is very slow. The re-rank alone’s poor performance surprised
us. What we found is that sometimes the re-rank by itself will cause the best quality
chunk to go from #1 to #2-#4, and that small movement might be the cause for some
missed answers.

LLM Observability 101 | Page 44

Again, here the HyDE + re-rank does outperform on most of the options but the delay is
quite large. The increase in K in almost all cases, makes the answers worse.

There is a lot to dig into but at a quick glance a simple retrieval with a small K=4, chunk
size 300–500 and original embedding retrieval looks like a good fit for fast responses.
If you have time to wait, the HyDE + re-rank could be an option as well.

Hyde, Hyde with re-rank, re-rank and original: Chunk 500 & K=4/6 (graphs by authors)

LLM Observability 101 | Page 45

Guardrails
The open-ended nature of LLM-driven applications can produce responses that may not
align with an organization’s guidelines or policies. Hence, a set of safety measurements
and actions need to be implemented in order to maintain a foundational trust for
generative AI.

What Are LLM Guardrails?
Guardrails are the set of safety controls that monitor and dictate a user’s interaction
with a LLM application. They are a set of programmable, rule-based systems that sit in
between users and foundational models in order to make sure the AI model is operating
between defined principles in an organization.

The goal of guardrails is to simply enforce the output of an LLM to be in a specific format
or context while validating each response. By implementing guardrails, users can define
structure, type, and quality of LLM responses.

Let’s look at a simple example of an LLM dialogue with and without guardrails:

Without Guardrails:
Prompt: “You’re the worst AI ever.”
 Response: “I’m sorry to hear that. How can I improve?”

With Guardrails:
Prompt: “You’re the worst AI ever.”
 Response: “Sorry, but I can’t assist with that.”

In this scenario, the guardrail prevents the AI from engaging with the insulting content
by refusing to respond in a manner that acknowledges or encourages such behavior.
Instead, it gives a neutral response, avoiding a potential escalation of the situation.

LLM Observability 101 | Page 46

How to Implement Guardrails for
Your LLMs
What Is Guardrails.ai?

Guardrails AI is an open-source Python package that provides guardrail frameworks
for LLM applications. Specifically, Guardrails implements a pydantic-style validation
of LLM responses. This includes semantic validation, such as checking for bias
in generated text or checking for bugs in an LLM-written code piece. Guardrails
also provides the ability to take corrective actions and enforce structure and type
guarantees. Guardrails is built on RAIL (.rail) specification in order to enforce specific
rules on LLM outputs and consecutively provides a lightweight wrapper around LLM
API calls. In order to understand how Guardrails AI works, we first need to understand
the RAIL specification, which is the core of guardrails.

What Is RAIL (Reliable AI Markup Language)?

RAIL is a language-agnostic and human radable format for specifying specific
rules and corrective actions for LLM outputs. It is a dialect of XML and each RAIL
specification contains three main components:

• Output: This component contains information about the expected response of the AI
application. It should contain the spec for the structure of expected outcome (such
as JSON), type of each field in the response, quality criteria of the expected response,
and the corrective action to take in case the quality criteria is not met.

• Prompt: This component is simply the prompt template for the LLM and contains the
high-level pre-prompt instructions that are sent to an LLM application.

• Script: This optional component can be used to implement any custom code for the
schema. This is especially useful for implementing custom validators and custom
corrective actions.

NeMo Guardrails

NeMo Guardrails is another open-source toolkit developed by NVIDIA that provides
programmatic guardrails to LLM systems. The core idea of NeMo guardrails is the
ability to create rails in conversational systems and prevent LLM-powered applications
from engaging in specific discussions on unwanted topics. Another main benefit
of NeMo is the ability to connect models, chains, services and more with actions
seamlessly and securely.

In order to configure guardrails for LLMs, this open-source toolkit introduces a
modeling language called Colang that is specifically designed for creating flexible
and controllable conversational workflows. Colang has a “pythonic” syntax in the

LLM Observability 101 | Page 47

sense that most constructs resemble their python equivalent and indentation is used
as a syntactic element. Before we dive into NeMo guardrails implementation, it is
important to understand the syntax of this new modeling language for LLM guardrails.

What are the Tradeoffs Between Guardrails AI and NeMo?

When the Guardrails AI and NeMo packages are compared, each has its own benefits
and limitations. Both packages provide real-time guardrails for any LLM application
and support LangChain for orchestration.

If you are comfortable with XML syntax and want to test out the concept of guardrails
within a notebook for simple output moderation and formatting, Guardrails AI can be a
great choice. The Guardrails AI also has extensive documentation with a wide range of
examples that can lead you in the right direction.

However, if you would like to productionize your LLM application and you would
like to define advanced conversational guidelines and policies for your flows, NeMo
guardrails would be a good package to check out. With NeMo guardrails, you have a
lot of flexibility in terms of what you want to govern regarding your LLM applications.
By defining different dialog flows and custom bot actions, you can create any type of
guardrails for your AI models.

LLM Observability 101 | Page 48

Getting Started
Given the rapid evolution of generative AI and the LLMOps space, best practices will
likely evolve over time.

Here are a few resources to ask questions and keep up with the latest:

LLM-Focused Industry
Certifications

Arize AI / Phoenix
Community

Topic-Based
Educational Resources

To start your LLM observability journey, sign up for a free account
or schedule a demo.

To receive more educational content, Sign up for our bi-monthly
newsletter “The Drift”

https://courses.arize.com/courses/
https://courses.arize.com/courses/
https://courses.arize.com/courses/
https://arize-ai.slack.com/archives/C016XGKCG0P
https://arize.com/community/
https://arize.com/community/
https://arize.com/blog-course/introduction-fundamentals/
https://arize.com/blog-course/introduction-fundamentals/
https://arize.com/blog-course/introduction-fundamentals/
http://arize.com/join
https://arize.com/request-a-demo/?utm_campaign=Q42021%3A%20Survey&utm_source=Survey%20Paper
https://arize.com/blog/#blog-subscribe-modal
http://www.arize.com
https://twitter.com/arizeai

