
Page 1LLM Guardrails 101

LLM Guardrails 101
A comprehensive guide to protecting your application,
including from itself.

Introduction

As LLM applications become more common, so too do jailbreak attempts, exploitations
of these apps, and harmful responses. More and more companies are falling prey to
damaging news stories driven by their chatbots selling cars for $1, writing poems critical
of their owners, or dealing out disturbing replies.

Fortunately, there is a solution to this problem: LLM guardrails.

Section 1: What Are LLM Guardrails?

Section 2: Types of Guardrails

Section 3: Dynamic Guards

https://news.ycombinator.com/item?id=38681450
https://www.theregister.com/2024/01/23/dpd_chatbot_goes_rogue/
https://www.theregister.com/2024/01/23/dpd_chatbot_goes_rogue/
https://www.forbes.com/sites/antoniopequenoiv/2024/02/28/microsoft-investigates-harmful-chatbot-responses-the-latest-chatbot-blunder-from-top-ai-companies/

Page 3LLM Guardrails 101

A key part of any modern large language model (LLM) application, LLM guardrails allow
you to protect your application from potentially harmful inputs, and block damaging
outputs before they’re seen by a user. As LLM jailbreak attempts become more common
and more sophisticated, having a robust guardrails approach is critical.

Let’s dive into how guardrails work, how they can be traced and acted upon, and how you
can use them to avoid becoming the next big news story.

How Do Guardrails Work?
LLM guardrails work in real-time to either catch dangerous user inputs or screen model
outputs. There are many different types of guards that can be employed, each specializing
in a different potential type of harmful input or output.

What Are the Primary Use Cases for Guardrails In AI Development?
Common input guard use cases include:
• Detecting and blocking jailbreak attempts
• Preventing prompt injection attempts
• Removing user personally identifiable information (PII) before it reaches a model

Common output guard use cases include:
• Removing toxic or hallucinated responses
• Removing mentions of a competitor’s product
• Screening for relevancy in responses
• Removing NSFW text

There can be a lot of ground to cover. Fortunately, tools like Guardrails AI offer a hub of
different guards that can be added to your application.

What Are LLM Guardrails?

Page 4LLM Guardrails 101

If a message in an LLM chat fails a guard, then the guard can take one of a few different
corrective actions: providing a default response, prompting the LLM for a new response, or
throwing an exception. For a guard that detects responses that may be damaging to your
company’s reputation, regenerating a response may work just fine. However for a guard
that detects jailbreak attempts, a default response may be more appropriate.

How To Use Guardrails
A variety of packages are available. Arize offers an integration with Guardrails AI to give
you best-in-class observability alongside top-of-line security.

Here are the basic steps necessary to use Guardrails with Arize. If you’re looking for a more
in-depth example, check out the following tutorial notebook walking through how to
enable guards on a RAG pipeline.

Example Notebook DocsDemo

https://colab.research.google.com/github/Arize-ai/rag-llm-prompt-evaluator-guard/blob/main/validator/tutorial_arize_hallucination_evaluator_with_rag.ipynb
https://docs.arize.com/arize/llm-monitoring/production-monitoring/guardrails
https://arize.com/resource/phoenix-guardrails-ai-integration-walkthrough/

Page 5LLM Guardrails 101

Import Packages and Initialize Arize

First, make sure you imported the correct packages and connected your application to
your Arize dashboard:

Page 6LLM Guardrails 101

Prepare Your Guards

Next, you need to add whichever guards you’re looking to use to your project. These
can be downloaded directly from the Guardrails hub. For this example, we’ll use our
ArizeDatasetEmbeddings guard.

Initialize Guardrails and Add Your Guard

Now we are ready to initialize our guard. Here we can specify whether this guard will act
on prompts or responses and what it should do if it catches a bad input or output. We also
disable Guardrails tracing in this step, as we’re using Arize to view our telemetry.

Page 7LLM Guardrails 101

Make Calls to your LLM

With that, we’re ready to
make protected calls to our
models. We can do this by
invoking our Guard.

Our guard will take care
of any retries or default
responses necessary based
on our earlier setup.

How To View Guard and Trace Data

If you followed the steps so far, you should already be seeing trace data in your project.

Page 8LLM Guardrails 101

The Balancing Act of LLM Guards
Implementing guardrails for AI systems is a delicate balancing act. While these safety
measures are important for responsible AI deployment, finding the right configuration
is necessary to maintain both functionality and security.

To effectively manage your guards, we strongly recommend using specialized tools
such as Guardrails AI or NemoAI. Although it’s technically possible to implement
each guard type manually, this approach quickly becomes unwieldy as your system’s
complexity grows.

On the other hand, it’s important to resist the temptation to over-index on guards. It
may seem prudent to implement every conceivable safety measure, but this approach
can be counterproductive. Excessive guardrails risk losing the intent of the user’s
initial request or the value of the app’s output. Instead, we advise starting with the
most critical guards and expanding judiciously as needed. Tools like Arize’s AI search
can be helpful in identifying clusters of problematic inputs to allow for targeted guard
additions over time.

Additionally, more sophisticated guards that rely on their own LLM calls introduce
additional costs and latency which must also be considered. To mitigate these issues,
consider using small language models like GPT 4o mini or Gemma-2b for auxiliary calls.

leverage Arize-Phoenix with Guardrails AI to set up a guard that blocks an LLM from
responding from attempted jailbreaks]

Types of Guardrails

DemoExample Notebook

https://docs.arize.com/arize/large-language-models/tracing/auto-instrumentation/guardrails-ai
https://github.com/NVIDIA/NeMo
https://arize.com/resource/phoenix-guardrails-ai-integration-walkthrough/
https://colab.research.google.com/drive/1NDn5jzsW5k0UrwaBjZenRX29l6ocrZ-_?usp=sharing

Page 9LLM Guardrails 101

What Are the Types of LLM Guardrails?

Input Validation and Sanitization

Input validation and sanitization serve as the first line of defense in AI safety. These guards
ensure that the data fed into your model is appropriate, safe, and in the correct format.

SYNTAX AND FORMAT CHECKS

While basic, these checks are important for maintaining system integrity. They verify
that the input adheres to the expected format and structure. For instance, if your model
expects certain parameters, what happens when they’re missing? Consider a scenario
where your RAG retriever fails to return documents, or your structured extractor pulls the
wrong data. Is your model prepared to handle this malformed request? Implementing
these checks helps prevent errors and ensures smooth operation.

CONTENT FILTERING

This guard type focuses on removing sensitive or inappropriate content before it
reaches the model. Detecting and removing personally identifiable information can
help avoid potential privacy issues, and filtering NSFW or toxic language can ensure
more appropriate responses from your LLM. We recommend implementing this guard
cautiously – overzealous filtering might inadvertently alter the user’s original intent. Often,
these types of guards are better suited filtering the outputs of your application rather than
the inputs.

JAILBREAK ATTEMPT DETECTION

These are the guards that prevent massive security breaches and keep your company out
of news headlines. Many collections of jailbreak prompts are available, and even advanced
models can fail on up to 40% of these publicly-documented attacks. As these attacks
constantly evolve, implementing effective guards can be challenging; we recommend
using an embedding-based guard like Arize’s, which can adapt to changing strategies.
At minimum, use a guard connected to a common library of prompt injection prompts,
such as Rebuff.

https://jailbreaking-llms.github.io/
https://arc.net/l/quote/hrkfskvw
https://hub.guardrailsai.com/validator/arize-ai/dataset_embeddings_guardrails
https://github.com/protectai/rebuff

Page 10LLM Guardrails 101

Output Monitoring and Filtering

Output guards generally fall into two categories: preventing damage, and
ensuring performance.

PREVENTING DAMAGE

Examples of this include:
• System Prompt Protection: Some attacks try to expose the prompt templates your

system uses. Adding a guard to detect system prompt language in your outputs can
mitigate this risk. Just be sure to avoid exposing this same template within your
guard’s code!

• NSFW or Harmful Language Detection: Allowing this type of language in your app’s
responses can be extremely harmful to user experience and your brand. Use guards to
help identify this language.

• Competitor Mentions: Depending on your use case, mentioning competitors might be
undesirable. Guards can be set up to filter out such references.

ENSURING PERFORMANCE

When it comes to performance, developers face a choice between using guards to
improve your app’s output in real-time or running offline evaluations to optimize your
pipeline or prompt template. Real-time guards introduce more latency and cost but offer
immediate improvements. Offline evaluations allow for pipeline optimization without
added latency, though there may be a delay between issue discovery and resolution.
We recommend starting with offline evaluations and only adding performance guards if
absolutely necessary.
• Hallucination Prevention: Guards can prevent hallucinations by comparing outputs

with reference texts or, when unavailable, cross-referencing with reliable sources like
Wikipedia.

• Critic Guards: This broad category involves using a separate LLM to critique and
improve your pipeline’s output before sending it to the user. These can be instructed
to focus on relevancy, conciseness, tone, and other aspects of the response.

What Strategies and Techniques Best Complement AI Guardrails?
While guardrails are important for AI safety, they’re not the only measures you
should consider.

Fence Your App from Other Systems

Isolating your AI application from other systems and networks creates an additional
layer of security, limiting potential vulnerabilities and preventing unauthorized access
or data leakage. Implement strict access controls and use secure APIs for necessary
inter-system communications.

Red Team Pre-Launch

Before deploying your AI system, conduct thorough red team exercises. This involves
having a dedicated team attempt to break, manipulate, or exploit your system in ways that
malicious actors might. These simulated attacks can reveal vulnerabilities that weren’t
apparent during development and allow you to address them before public release.

Monitor Your App Post-Launch

Perhaps the most critical strategy is continuous
LLM production monitoring after deployment. No
amount of pre-launch testing can anticipate all
real-world scenarios. Implement robust logging
and monitoring systems to track your app’s
performance, user interactions, and potential
issues, and regularly analyze this data to identify
patterns, anomalies, or emerging problems.
This will allow you to refine your guardrails and
respond swiftly to any security concerns.

https://docs.arize.com/arize/large-language-models/production-monitoring
https://docs.arize.com/arize/large-language-models/production-monitoring

Page 12LLM Guardrails 101

While static guards are great at filtering out predefined content like NSFW language, they
struggle when faced with sophisticated attacks like jailbreak attempts, prompt injection,
and more. These dynamic threats require equally dynamic defenses that can evolve
alongside the attackers’ strategies.

Manually updating guards to counter new threats is a near impossible task, quickly
becoming unsustainable as attack vectors multiply. Fortunately, two approaches allow us
to create adaptive guards that can keep pace with emerging threats: few-shot prompting
and embedding-based guards.

Few-Shot Prompting
This technique involves adding examples of recent jailbreak attempts or other attacks
directly into your guard’s prompt. By exposing the guard to real-world attack patterns,
you improve its ability to recognize and thwart similar threats in the future.

Dynamic Guards

Page 13LLM Guardrails 101

Embedding-Based Guards
This is a more sophisticated approach to dynamic protection. It involves comparing
the embedding of a user’s input against a database of known attack embeddings. By
checking the similarity between these representations, the system can identify and
block potentially malicious inputs that exceed a predefined similarity threshold. Arize
has developed an easy-to-use but powerful implementation of this concept with our
ArizeDatasetEmbeddings Guard.

Arize’s ArizeDatasetEmbeddings Guard
The ArizeDatasetEmbeddings guard follows these steps:
• Start with a set of example attacks and generate embeddings for each.
• When a new prompt arrives, chunk the input and create embeddings for each chunk.
• Calculate the cosine distance between the prompt chunk embeddings and the

example embeddings.
• If any distance falls below a user-defined threshold (default: 0.2), the guard intercepts

the call.

By default, this guard uses 10 examples from a public jailbreak prompt dataset. However,
you can customize it with your own data using the sources={} parameter, allowing you
to fine-tune the guard based on attacks specific to your application.

Both few-shot prompting and embedding-based guards require an up-to-date collection
of attack prompts. You can either gather these yourself through your application’s usage
or tap into online repositories. While we won’t link directly to them here, platforms like
Reddit and Twitter (X) host frequently updated collections of attack prompts that can be
valuable resources for training your guards.

https://github.com/Arize-ai/dataset-embeddings-guardrails/tree/main

Page 14LLM Guardrails 101

Performance
We tested the
ArizeDatasetEmbeddings
guard against a dataset
of jailbreak attempts
and regular prompts,
and the results speak for
themselves. Crucially,
the guard keeps false
negatives low (shown in
the top right quadrant
below), preventing missed
attacks.

True Positives 86.43% of 656 jailbreak prompts were successfully blocked.

False Negatives 13.57% of jailbreak prompts slipped through.

False Positives 13.95% of 2000 regular prompts were incorrectly flagged.

True Negatives 86.05% of regular prompts passed correctly.

Median Latency 1.41 seconds for end-to-end LLM call on GPT-3.5.

When To Use Dynamic Guards?
While dynamic guards offer powerful protection, they come with a few considerations:
• Increased computational cost due to larger models or embedding generation.
• Higher latency, potentially impacting response times.
• The need for ongoing maintenance and updates to the attack prompt database.

It’s important to weigh these factors against the level of protection required for your
specific use case.

Page 16LLM Guardrails 101

To start your LLM observability journey, sign up for a free account
or schedule a demo.

To receive more educational content, Sign up for our bi-monthly newsletter
“The Evaluator.”

We hope this series has provided you with a comprehensive understanding of the
guardrail landscape for LLMs. From basic content filtering to sophisticated dynamic
defenses, you now have the knowledge to implement robust safety measures for your
AI applications.

Remember, the field of AI safety is rapidly evolving. Staying informed and continuously
adapting your defenses is the only way to maintain secure and responsible AI systems.

Conclusion

LLM-Focused Industry
Certifications

Arize AI / Phoenix Community Topic-Based
Educational Resources

http://arize.com/join
https://arize.com/request-a-demo/?utm_campaign=Q32024:LLM_Guardrails&utm_medium=whitepaper
https://arize.com/blog/#blog-subscribe-modal
https://arize.com/
https://twitter.com/arizeai
https://courses.arize.com/courses/
https://arize-ai.slack.com/archives/C016XGKCG0P
https://arize.com/blog-course/introduction-fundamentals/

