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Why are evals important?

Large language models (LLMs) are an incredible tool for developers 
and business leaders to create new value for consumers. They 
make personal recommendations, translate between structured and 
unstructured data, summarize large amounts of information, and do so 
much more.

As the applications multiply, so does the importance of measuring the 
performance of LLM-powered systems.

Developers using LLMs build applications to respond to user queries, 
transform or generate content, and classify and structure data. 

It’s extremely easy to start building an AI application using LLMs 
because developers no longer have to collect labeled data or train a 
model. They only need to create a prompt to ask the model for what 
they want. However, this comes with tradeoffs. LLMs are generalized 
models that aren’t fine tuned for a specific task. With a standard 
prompt, these applications demo really well, but in production 
environments, they often fail in more complex scenarios. 

You need a way to judge the quality of your LLM outputs. An example
would be judging the quality of these chat outputs on relevance,
hallucination %, and conversation correctness.

When you adjust your prompts or retrieval strategy, you will know 
whether your application has improved—and by how much—using 
evaluation. The dataset you are evaluating determines how trustworthy 
and generalizable your evaluation metrics are to production use. A 
limited dataset could showcase high scores on evaluation metrics, but 
perform poorly in real-world scenarios.

Introduction
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While at first glance the shift from traditional software testing methods like integration 
and unit testing to LLM application evaluations may seem drastic, both approaches 
share a common goal: ensuring that a system behaves as expected and delivers 
consistent, reliable outcomes. Fundamentally, both testing paradigms aim to validate 
the functionality, reliability, and overall performance of an application.

In traditional software engineering:

Unit Testing isolates individual components of the code, ensuring that each 
function works correctly on its own.

Dynamic Behavior Evaluation: Rather than testing deterministic code, LLM 
evaluations focus on how the application responds to various inputs in non-
deterministic situations, examining not just accuracy but also context
relevance, coherence, and product level user experience.

Integration Testing focuses on how different modules or services work 
together, validating the correctness of their interactions.

Task or Product Level Assessments: Evaluations are now centered on the
application’s ability to complete user-specific tasks, such as resolving queries,
generating coherent responses, or interacting seamlessly with external
systems (e.g., function calling). The eval is often a product experience 
assessment of how well the AI is working on intelligent tasks.

In the world of LLM applications, these goals remain, but the complexity of 
behavior increases due to the non-deterministic nature of LLMs. 

Both paradigms emphasize predictability and consistency, with the key difference 
being that LLM applications require dynamic, context-sensitive evaluations, as 
their outputs can vary with different inputs. However, the underlying principle 
remains: ensuring that the system (whether it’s traditional code or an LLM-driven 
application) performs as designed, handles edge cases, and delivers value reliably.

Paradigm Shift
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LLM as a Judge Eval 

Often called LLM as a judge, LLM-assisted evaluation uses AI to evaluate AI — with 
one LLM evaluating the outputs of another and providing explanations.

LLM-assisted evaluation is often needed because user feedback or any other 
“source of truth” is extremely limited and often nonexistent (even when possible, 
human labeling is still expensive) and it is easy to make LLM applications complex.

LLM Eval Types 

Fortunately, we can use the power of LLMs to automate the evaluation. In this 
eBook, we will delve into how to set this up and make sure it is reliable.

While using AI to evaluate AI may sound circular, we have always had human 
intelligence evaluate human intelligence (for example, at a job interview or your 
college finals). Now AI systems can finally do the same for other AI systems.
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Code-based Eval

Code-based LLM evaluations are methods that use programming code to assess
the performance, accuracy, or behavior of large language models (LLMs). These
evaluations typically involve creating automated scripts or CI/CD test cases to 
measure how well an LLM performs on specific tasks or datasets. A code-based 
eval is essentially a python or JS/TS unit test. 

Code-based evaluation is sometimes preferred as a way to reduce costs as it 
does not introduce token usage or latency. When evaluating a task such as code 
generation, a code-based eval will often be the preferred method since it can 

You are given a question, an answer and reference text. You must 
determine whether the given answer correctly answers the question based 
on the reference text. Here is the data:
    [BEGIN DATA]
    ************
    [Question]: {question}
    ************
    [Reference]: {context}
    ************
    [Answer]: {sampled_answer}
    [END DATA]
Your response must be a single word, either “correct” or “incorrect”, 
and should not contain any text or characters aside from that word. 
“correct” means that the question is correctly and fully answered by 
the answer. “incorrect” means that the question is not correctly or 
only partially answered by the answer.

The process here is for LLMs to generate synthetic ground truth that can be used 
to evaluate another system. Which begs a question: why not use human feedback 
directly? Put simply, because you often do not have enough of it.

Getting human feedback on even one percent of your input/output pairs is a 
gigantic feat. Most teams don’t even get that. In such cases, LLM-assisted evals 
help you benchmark and test in development prior to production. But in order for 
this process to be truly useful, it is important to have evals on every LLM sub-call, 
of which we have already seen there can be many.
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be hard coded, and follows a set of rules. However, for evaluation that can be 
subjective, like hallucination, there’s no code evaluator that could provide that label 
reliably, in which case LLM as a Judge needs to be used.

Common use cases for code-based evaluators include:

LLM APPLICATION TESTING
Code-based evaluations can test the LLM’s performance at various levels—
focusing on ensuring that the output adheres to the expected format, includes 
necessary data, and passes structured, automated tests.

Test Correct Structure of Output: In many applications, the structure of the 
LLM’s output is as important as the content. For instance, generating JSON-
like responses, specific templates, or structured answers can be critical for 
integrating with other systems.

Test Specific Data in Output: Verifying that the LLM output contains or 
matches specific data points is crucial in domains such as legal, medical, or 
financial fields where factual accuracy matters.

Structured Tests: Automated structured tests can be employed to validate 
whether the LLM behaves as expected across various scenarios. This might 
involve comparing the outputs to expected responses or validating edge cases.

EVALUATING YOUR EVALUATOR
Evaluating the effectiveness of your evaluation strategy ensures that you’re 
accurately measuring the model’s performance and not introducing bias or missing 
crucial failure cases. Code-based evaluation for evaluators typically involves 
setting up meta-evaluations, where you evaluate the performance or validity of the 
evaluators themselves.

In order to evaluate your evaluator, teams need to create a set of hand annotated 
test datasets. These test datasets do not need to be large in size, 100+ examples 
are typically enough to evaluate your evals. In Arize Phoenix, we include test 
datasets with each evaluator to help validate the performance for each model type.

We recommend this guide for for a more in depth review of how to improve and 
check your evaluators.

https://eugeneyan.com/writing/llm-evaluators/
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Eval Output Type

Depending on the situation, the evaluation can return different types of results:

Categorical (Binary): The evaluation results in a binary output, such as true/
false or yes/no, which can be easily represented as 1/0. This simplicity makes 
it straightforward for decision-making processes but lacks the ability to 
capture nuanced judgements.

Categorical (Multi-class): The evaluation results in one of several 
predefined categories or classes, which could be text labels or distinct 
numbers representing different states or types.

Continuous Score: The evaluation results in a numeric value within a set 
range (e.g. 1-10), offering a scale of measurement. We don’t recommend 
using this approach.

Categorical Score: A value of either 1 or 0. The categorical score can 
be pretty useful as you can average your scores but don’t have the 
disadvantages of continuous range.
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Although score evals are an option, we recommend using categorical evaluations 
in production environments. LLMs often struggle with the subtleties of continuous 
scales, leading to inconsistent results even with slight prompt modifications or 
across different models. Repeated tests have shown that scores can fluctuate 
significantly, which is problematic when evaluating at scale.

Categorical evals, especially multi-class, strike a balance between simplicity and 
the ability to convey distinct evaluative outcomes, making them more suitable for 
applications where precise and consistent decision-making is important.

class ExampleResult(Evaluator):
    def evaluate(self, input, output, dataset_row, metadata, **kwargs) -> 
EvaluationResult:  
        print("Evaluator Using All Inputs")
        return(EvaluationResult(score=score, label=label, 
explanation=explanation)
        
class ExampleScore(Evaluator):
    def evaluate(self, input, output, dataset_row, metadata, **kwargs) -> 
EvaluationResult:  
        print("Evaluator Using A float")
        return 1.0
      
class ExampleLabel(Evaluator):
    def evaluate(self, input, output, dataset_row, metadata, **kwargs) -> 
EvaluationResult:  
        print("Evaluator label")
        return "good"  
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Online vs Offline Evaluation

Evaluating LLM applications across their lifecycle requires a two-pronged approach: 
offline and online. Offline LLM evaluation generally happens during pre-production, and 
involves using curated or outside datasets to test the performance of your application. 
Online LLM evaluation runs once your app is in production, and is run on production 
data. The same evaluator can be used to run online and offline evaluations.

OFFLINE LLM EVALUATION
Offline LLM evaluation generally occurs during the development and testing
phases of the application lifecycle. It involves evaluating the model or system in
controlled environments, isolated from live, real-time data. The primary focus of
offline evaluation is pre-deployment validation CI/CD, enabling AI engineers to 
test the model against a predefined set of inputs (like golden datasets) and gather 
insights on performance consistency before the model is exposed to real-world 
scenarios. This process is crucial for:

Note: The "offline" part of "offline evaluations" refers to the data that is being used 
to evaluate the application. In offline evaluations, the data is pre-production data 
that has been curated and/or generated, instead of production data captured 

Prompt and Output Validation: Offline tests allow teams to evaluate prompt 
engineering changes and different model versions before committing them to 
production. AI engineers can experiment with prompt modifications and evaluate 
which variants produce the best outcomes across a range of edge cases.

Golden Datasets: Evaluating LLMs using golden datasets (high-quality,
annotated data) ensures that the LLM application performs optimally 
in known scenarios. These datasets represent a controlled benchmark, 
providing a clear picture of how well the LLM application processes specific 
inputs, and enabling engineers to debug issues before deployment.

Pre-production Check: Offline evaluation is well-suited for running CI/CD
tests on datasets that reflect complex user scenarios. Engineers can check 
the results of offline tests and changes prior to pushing those changes to 
production.
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ONLINE LLM EVALUATION
Online LLM evaluation, by contrast, takes place in real-time, during production. 
Once the application is deployed, it starts interacting with live data and real 
users, where performance needs to be continuously monitored. Online evaluation 
provides real-world feedback that is essential for understanding how the 
application behaves under dynamic, unpredictable conditions. It focuses on:

Continuous Monitoring: Applications deployed in production environments 
need constant monitoring to detect issues such as degradation in 
performance, increased latency, or undesirable outputs (e.g., hallucinations, 
toxicity). Automated online evaluation systems can track application outputs 
in real time, alerting engineers when specific thresholds or metrics fall outside 
acceptable ranges.

Real-Time Guardrails: LLMs deployed in sensitive environments may 
require real-time guardrails to monitor for and mitigate risky behaviors like 
generating inappropriate, hallucinated, or biased content. Online evaluation 
systems can incorporate these guardrails to ensure the LLM application 
proactively being protected rather than reactively. 

from runs of your application. Because of this, the same evaluator can be used for 
offline and online evaluations. Having one unified system for both offline and online 
evaluation allows you to easily use consistent evaluators for both techniques.
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While it may seem advantageous to apply online evaluations universally, they
introduce additional costs in production environments. The decision to use online 
evaluations should be driven by the specific needs of the application and the real-
time requirements of the business. AI engineers can typically group their evaluation 
needs into three categories: offline evaluation, guardrails, and online evaluation.

Offline evaluation: Offline evaluations are used for checking LLM 
application results prior to releasing to production. Use offline evaluations for 
CI/CD checks of your LLM application. 

Example: Customer service chatbot where you want to make certain changes 
to a prompt do not break previously correct responses.

Guardrail: AI engineers want to know immediately if something isn’t right and 
block or revise the output. These evaluations run in real-time and block or 
flag outputs when they detect that the system is veering off-course.

Example: An LLM application generates automated responses for a healthcare 
system. Guardrails check for critical errors in medical advice, preventing 
harmful or misleading outputs from reaching users in real time.

Online evaluation: AI engineers don’t want to block or revise the output, but 
want to know immediately if something isn’t right. This approach is useful 
when it’s important to track performance continuously but where it’s not 
critical to stop the model’s output in real time.

Example: An LLM application generates personalized marketing emails. While 
it’s important to monitor and ensure the tone and accuracy are correct, minor 
deviations in phrasing don’t require blocking the message. Online evaluations 
flag issues for review without stopping the email from being sent.

Choosing Between Online and 
Offline Evaluation
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Model Benchmarks vs Task Evals

LLM model evaluations look at overall macro performance of LLMs at an array of 
tasks and LLM system evaluations — also referred to as LLM task evaluations — 
are more system and use-case specific, evaluating components an AI engineer 
building an LLM app can control (i.e. the prompt template or context).

Since the term “LLM evals” gets thrown around interchangeably, this distinction is 
sometimes lost in practice. It’s critical to know the difference, however.

Why? Often, teams consult LLM leaderboards and libraries when such benchmarks 
may not be helpful for their particular use case. Ultimately, AI engineers building 
LLM apps that plug into several models or frameworks or tools need a way to 
objectively evaluate everything at highly specific tasks – necessitating system 
evals that reflect that fact. 

LLM model evals are focused on the overall performance of the foundational 
models. The companies launching the original customer-facing LLMs needed a 
way to quantify their effectiveness across an array of different tasks.
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In contrast, LLM system evaluation, also sometimes referred to as LLM task 
evaluation, is the complete evaluation of components that you have control of 
in your system. The most important of these components are the prompt (or 
prompt template) and context. LLM system evals assess how well your inputs 
can determine your outputs.

LLM system evaluation may, for example, hold the LLM constant and change 
the prompt template. Since prompts are more dynamic parts of your system, 
this evaluation makes a lot of sense throughout the lifetime of the project. 
For example, an LLM can evaluate your chatbot responses for usefulness or 
politeness, and the same eval can give you information about performance 
changes over time in production.

There are a lot of common LLM evaluation metrics being employed today, such 
as relevance, hallucinations, question-answering accuracy, toxicity, and retrieval-
specific metrics. However, most teams handcraft metrics based on their business 
use cases. Each one of these LLM system evals will have different templates based 
on what is being evaluated.
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When evaluating LLM applications, the primary focus is on three key areas: the 
task, historical performance, and golden datasets. Task-level evaluation ensures 
that the application is performing well on specific use cases, while historical 
traces provide insight into how the application has evolved over time. Meanwhile, 
golden datasets act as benchmarks, offering a consistent way to measure 
performance against well-established ground truth data.

What are you evaluating?

Pre-Production
Human Annotation and Curated Datasets

In the process of evaluating large language models (LLMs) or other AI systems, 
building a high-quality, curated golden dataset is essential. A curated golden 
dataset refers to a collection of examples that are carefully crafted and validated to 
serve as the “ground truth” or benchmark for evaluating the model’s performance. 
This dataset forms the backbone of many evaluation strategies, ensuring that the 
results are reliable and consistent.

1. Creating a Hand-Crafted Dataset
The simplest form of a curated golden dataset starts with hand-
crafted examples. In this approach, subject matter experts or dataset 
designers create examples manually to capture different aspects 
of the task or domain being evaluated. These examples represent 
various inputs that the model is expected to handle, along with their 
correct or expected outputs.
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For example, if evaluating a model for summarization, you could 
manually create a series of text passages with corresponding 
summaries that are ideal representations of what the model should 
generate. The strength of this approach is that it allows for the creation 
of nuanced and challenging examples tailored to specific use cases  
or edge cases.

2. Annotating the Dataset with Ground Truth
Once the hand-crafted dataset is created, human annotators play a key 
role in adding ground truth. Ground truth refers to the correct answers 
or labels that serve as the standard for evaluation. In some cases, 
annotators may need to modify or refine the original labels if additional 
examples are included later.

For instance, annotators could be asked to label the output of a language 
model as “correct” or “incorrect” based on whether it matches the 
expected behavior. This ground truth will then serve as the reference 
point when evaluating how well the model performs in comparison.

3. Multi-Annotator Validation: Ensuring Consensus and Accuracy
To ensure the quality and reliability of the ground truth data, it’s 
crucial to validate the annotations across multiple annotators. In this 
process, several annotators independently label or validate each 
example. A common approach is to use the consensus of at least two 
out of three annotators to confirm the correct label. If two out of three 
annotators agree on the same label, that label becomes the confirmed 
ground truth.

This multi-annotator strategy helps to reduce bias or errors that could 
arise from individual perspectives and ensures that the dataset is 
robust and reliable. Additionally, it is common to perform checks to 
ensure that annotators have a high level of agreement (called inter-
annotator agreement), which further strengthens the trustworthiness of 
the dataset.
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Human annotation is a critical component in evaluating LLMs and other AI 
systems. By combining hand-crafted datasets, ground truth labels, and multi-
annotator validation, organizations can create a golden dataset that is rich 
in accuracy and diversity. This dataset allows for a more meaningful and 
comprehensive evaluation of model performance, providing the context needed 
to interpret automated metrics and improve model outputs.

Human Annotation in LLM Evaluation

Annotations and User Feedback

The rise of Reinforcement Learning from Human Feedback (RLHF) has highlighted 
the importance of human feedback in training and refining LLM applications. 
Whether you're manually labeling subtle response variations, curating datasets for 
experimentation, or logging real-time user feedback, having a robust system for 
capturing and cataloging annotations is critical to improving the performance and
accuracy of your LLM application.

Annotations are custom labels that can be added to LLM traces or spans, 
allowing AI engineers to track performance and gather insights at a granular level. 
Annotations help to:

Annotate Production Span Data: eams want to annotate data directly 
on top of production responses allowing those annotations to be used for 
filtering, analytics or production data analysis.

Categorize Spans or Traces: Assign categories to specific parts of a 
conversation or output, enabling more detailed analysis of where a model 
succeeds or fails.

Annotate Datasets for Experimentation: Use human-labeled data to 
create high-quality datasets for testing and refining LLM applications, for 
handcrafted CI/CD tests, few-shot prompting, or targeted evaluations.
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Annotation Queues: The use of annotation queues has grown in use in 
LLM Observability tools. The queues in Arize do not move data, but assign 
labeling tasks to annotators on top of current data, either production data 
or dataset data. When labels are needed on very specific types of data, that 
data is added to queues, and annotators work through those specific queues. 
The added labels will then appear on the original data. 

Log Real-Time Feedback: Collect feedback from live applications through 
APIs, allowing for dynamic, continuous improvements based on actual user 
interactions.These are not always viewed as annotations but are worth a 
mention in this section.

Annotations are particularly valuable for:

A well-implemented annotation and feedback system is essential for refining LLM 
applications, ensuring that human expertise and real-world use cases are properly 
incorporated into the evaluation process.

Evaluating Agreement/Disagreement: Identifying where human 
evaluators and LLM evaluations align or diverge can reveal areas for 
improving automated evaluations.

Gathering Direct Application Feedback: Integrate feedback mechanisms 
directly into live applications, capturing user responses and experiences to 
continuously improve LLM outputs.

Subject Matter Expertise: In complex domains (e.g., medical, legal, or 
customer service applications), expert feedback is crucial to determining 
the quality of the application. This input complements automated metrics 
and provides deeper insight into how well the application performs in 
specialized contexts.
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Creating and Validating Synthetic Datasets as 
Golden Datasets

Synthetic datasets are artificially created datasets that are designed 
to mimic real-world information. Unlike naturally occurring data, which 
is gathered from actual events or interactions, synthetic datasets 
are generated using algorithms, rules, or other artificial means. 
These datasets are carefully created to represent specific patterns, 
distributions, or scenarios that developers and researchers want to 
study or use for testing.

In the context of large language models, synthetic datasets  
might include:

By using synthetic data, developers can create controlled environments 
for experimentation, ensure coverage of edge cases, and protect privacy 
by avoiding the use of real user data.

The applications of synthetic datasets are varied and valuable:

Generated text conversations simulating customer support interactions.

Artificial question-answer pairs covering a wide range of topics.

Fabricated product reviews with varying sentiments and styles.

Simulated code snippets with intentional bugs or specific patterns.

They allow us to test and validate model performance, especially 
for assessing how well models perform specific tasks.

Synthetic data helps generate initial traces of application behavior, 
facilitating debugging in tools like Arize.

Perhaps most importantly, synthetic datasets serve as “golden 
data” for consistent experimental results. This is particularly useful 
when developing and experimenting with applications that haven’t 
yet launched.
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COMBINING SYNTHETIC DATASETS WITH HUMAN EVALUATION
While synthetic datasets offer many advantages, they may sometimes miss key 
use cases or types of inputs that humans would naturally consider. Human-in-the-
loop processes are valuable for dataset improvement.

Recent research has shown that including even a small number of human-
annotated examples can significantly improve the overall quality and effectiveness 
of a synthetic dataset. This hybrid approach combines the scalability of synthetic 
data with the understanding that human evaluators provide.

Human annotators can add targeted examples to synthetic datasets to address 
gaps or underrepresented scenarios. This process of augmenting synthetic data 
with human-curated examples can be easily implemented using tools like Arize.

The addition of these human-annotated examples can be particularly effective in 
improving the dataset’s performance in few-shot learning scenarios, where models 
need to generalize from a small number of examples.
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Synthetic datasets are not static, one-time creations – they are dynamic 
tools that require ongoing attention. To maintain their usefulness, developer 
must do several things:

First, implement a regular refresh cycle. Revisit and update your datasets 
periodically to keep pace with model improvements and account for data 
drift in real-world applications. 

Second, transparency is key in synthetic data generation. Maintain detailed 
records of the entire process, including the prompts used, models employed, 
and any post-processing steps applied.

Third, regular evaluation is important. Assess the performance of your 
synthetic datasets against real-world data and newer models on an 
ongoing basis.

Finally, when augmenting synthetic datasets with human-curated examples, 
take a balanced approach. Add enough human input to enhance the 
dataset’s quality and coverage, but be careful not to overwhelm the 
synthetic component.

By adhering to these practices, you can maximize the long-term value and 
reliability of your synthetic datasets, making them powerful tools for ongoing 
model evaluation and experimentation.

Learn more here.

Best Practices for Synthetic 
Dataset Use

https://arize.com/blog/creating-and-validating-synthetic-datasets-for-llm-evaluation-experimentation/
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Benchmarking LLM Evaluation

Benchmarking LLM evaluation is critical to ensure your evaluation strategy 
addresses these core areas:

BENCHMARKING LLM AS A JUDGE
Begin with a metric best suited for your use case. Then, you need the golden dataset. 
This should be representative of the type of data 
you expect the LLM eval to see. The golden 
dataset should have the “ground truth” label so 
that you can measure performance of the LLM 
eval template. 

Evaluation Accuracy: Does the evaluation process correctly capture the 
quality of outputs generated by the application? This includes testing whether 
your evaluation metrics (e.g., relevance, accuracy) accurately reflect real-world 
outcomes like user satisfaction or task completion.

Consistency Across Scenarios: Benchmark the evaluation process for 
consistency across a variety of application scenarios, including edge cases, 
stress tests, and diverse input types. The goal is to ensure that evaluations 
remain reliable and do not favor certain cases over others.

Evaluation Latency: How fast can evaluations be conducted in real-
time environments? Latency in generating evaluation results is critical for 
applications where fast feedback loops are essential.

Human vs. Automated Evaluations: Compare automated evaluation 
systems (such as those scoring relevance or accuracy) against human 
evaluators (annotators) to ensure alignment. This benchmarking helps ensure 
that automated processes reliably approximate human judgment.
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Then you need to decide which LLM you want to use for evaluation. This could be 
a different LLM from the one you are using for your application. For example, you 
may be using Llama for your application and GPT-4 for your eval. Often this choice 
is influenced by questions of cost and accuracy.

Now comes the core component that we are trying to benchmark and improve: the 
eval template. If you’re using an existing library like OpenAI or Arize Phoenix, you 
should start with an existing template and see how that prompt performs.

What is the input? In our example, it is the documents/context that was 
retrieved and the query from the user.

What are we asking? In our example, we’re asking the LLM to tell us if the 
document was relevant to the query.

What are the possible output formats? In our example, it is binary relevant/
irrelevant, but it can also be multi-class (e.g., fully relevant, partially relevant, 
not relevant).
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The more specific you are about how to classify 
or grade a response, the more accurate your LLM 
evaluation will become. Here is an example of a 
custom template which classifies a response to a 
question as positive or negative. 

MY_CUSTOM_TEMPLATE = ‘’’
    You are evaluating the positivity or 
negativity of the responses to questions.
    [BEGIN DATA]
    ************
    [Question]: {question}
    ************
    [Response]: {response}
    [END DATA]

    Please focus on the tone of the response.
    Your answer must be single word, either 
“positive” or “negative”
    ‘’’

You now need to run the eval across your golden dataset. Then you can generate 
metrics (overall accuracy, precision, recall, F1-score, etc.) to determine the 
benchmark. It is important to look at more than just overall accuracy. We’ll discuss 
that below in more detail.
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If you are not satisfied with the performance of your LLM evaluation template, you 
need to change the prompt to make it perform better. This is an iterative process 
informed by hard metrics. As is always the case, it is important to avoid overfitting 
the template to the golden dataset.

Finally, you arrive at your benchmark. The optimized performance on the golden 
dataset represents how confident you can be on your LLM eval. It will not be as 
accurate as your ground truth, but it will be accurate enough, and it will cost much 
less than having a human labeler in the loop on every example.

relevant

Irrelevant

precision

0.70

0.89

recall

0.70

0.89
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Evals with Explanations

Eval Hierarchy

It can be hard to understand in many cases why an LLM responds in a specific 
way. Explanations showcase why the LLM decided on a specific score for your 
evaluation criteria, and may even improve the accuracy of the evaluation.

Evaluations can occur at different levels of granularity. At the most basic level, 
span-level evaluations assess the performance of specific components within an 
application’s response. A trace-level evaluation looks at trends across multiple 
full runs of your application, while session-level evaluation expands the scope to 
multiple interactions. Understanding this hierarchy allows for a more structured and 
comprehensive evaluation strategy.
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Building a Robust Evaluation Approach

In order to ensure that LLMs are performing optimally and reliably, 
a well-thought-out evaluation framework is essential. A robust 
evaluation approach needs to account for several factors that 
influence both the practical usability of the framework and its 
ability to scale with evolving models. There are many existing 
evaluation frameworks, including our evals library in Arize Phoenix, 
and there is always the option to build your own system. Below are 
the key aspects that to consider when choosing or building a solid 
and comprehensive evaluation system.

ERGONOMICS: HOW EASY IS IT TO USE?
A user-friendly evaluation framework is crucial for broad 
adoption and frequent usage. If the framework is too complex 
or cumbersome, it discourages experimentation and regular 
assessments. Good ergonomics ensure that setting up and 
running evaluations is intuitive, even for non-technical users or 
stakeholders. A good evaluation system should allow for quick 
setup, intuitive workflows, and ease of collaboration between 
different stakeholders.

PARALLELIZATION: CAN THE FRAMEWORK SUPPORT 
PARALLEL EVALUATION CALLS?
The ability to run evaluations in parallel is a game-changer 
when dealing with large-scale applications or high volumes of 
requests. Parallelization speeds up the evaluation process, allowing 
the framework to assess multiple models or multiple datasets 
simultaneously, leading to more efficient workflows.

ONLINE/OFFLINE EVALUATION SUPPORT
An effective evaluation framework should be adaptable to both 
online (real-time) and offline (batch-processed) environments. 
While offline evaluations are crucial for testing in a controlled 
environment, online evaluations offer insights into real-time 
performance under dynamic, real-world conditions.
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FLEXIBILITY: CUSTOM TEMPLATES FOR LLM AS A JUDGE
The evaluation framework should be flexible enough to accommodate a wide range 
of use cases, tasks, and metrics. Customizable evaluation templates are key to this 
flexibility, enabling teams to tailor the evaluation process to specific requirements, 
including different task types or performance goals.

UI VS. NON-UI: DOES THE FRAMEWORK PROVIDE A UI OR IS IT PURE CODE?
Having both a UI and a non-UI (code-based) option in an evaluation framework 
caters to a wider audience. A UI allows for easy setup and management of 
evaluations, especially for non-technical users, while a code-based option offers 
more customization and control for developers.

SCALE: HANDLING INCREASING COMPLEXITY AND CALLS
As the complexity of LLM applications grows, so does the need for a scalable 
evaluation framework. Scalability encompasses the ability to handle increasing 
calls, higher throughput, and more intricate evaluation criteria without sacrificing 
performance.

INCLUDING EXPLANATIONS: PROVIDING INTERPRETABILITY
Including explanations in the evaluation results adds a layer of interpretability to the 
evaluation process. Rather than simply providing a pass/fail result or a numerical 
score, it is essential to explain why the application performed well or poorly on 
specific tasks.
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Choosing an Evaluation Model

Selecting the right evaluation model is crucial to ensuring that your
LLM evaluation approach is effective. The choice depends on how 
often you are iterating on evaluations (often quite frequently), cost 
versus accuracy requirements, and flexibility requirements.

Base Models: Many teams when starting on Evaluations 
leverage the same models they are using for the LLM 
application. If a team is using GPT-4o or Claude Sonet or 
Gemini they will use the same model for Evaluations. This 
gives a lot of flexibility and a place to baseline before moving 
to a different approach that trades off accuracy vs cost.

Base SLM Models: The SLM model versions of base models 
are a great choice for both Evals and guardrails. The GPT-4o 
mini or Gemini/Gemma is 1/10 of the cost of base models 
and incredibly fast for guardrail type applications. These are 
a natural place to test against before moving to something 
more complex and more rigid like a fine tuned model.

LLM Fine Tune: A fine tune of a 1B Llama or Phi model can 
allow teams to apply a very specific eval, with a good set of 
language generalization at a reduced cost. We recommend 
moving to something like this as you have truly scaled out 
your application and have a set of very focused evaluations 
you are working to get reduced in total cost.

Fine-Tune Classifier (BERT Based): These models 
are incredibly cheap but represent a large trade off in 
generalization ability (BERT does not work across languages 
or situations well) versus flexibility (if you want to change you 
need to retrain) with low cost. If cost is your main objective 
and you are laser focused on a single language and use 
case, the BERT fine tune might make sense, though there 
are so many better options we recommend against.



LLM App Evaluation  |  Page 28 ↑ Table of contents  |  Next section  ↓

CI/CD
Experiments

An experiment allows you to systematically test and validate changes in your LLM 
applications using a curated dataset. By defining a dataset (a collection of examples), 
creating tasks to generate outputs, and setting up evaluators to assess those outputs, 
you can run an experiment to see how well your updated pipeline performs. Whether 
you’re testing improvements with a golden dataset or troubleshooting issues with 
a problem dataset, experiments provide a structured way to measure the impact of 
your changes and ensure your application is on the right track.

Components of experiments:

Datasets: Datasets are collections of examples that provide the inputs and, 
optionally, expected reference outputs for evaluating your application. These 
examples are used in experiments to track improvements to your prompt, 
LLM, or other parts of your LLM application.

Tasks: A task is any function or process that produces a JSON-serializable 
output. Typically, a task replicates the LLM functionality you’re aiming to 
test. For instance, if you’ve made a prompt change, your task will run the 
examples through the new prompt to generate an output. The task is used 
in the experiment to process the dataset, producing outputs that will be 
evaluated in the next steps.

Evaluators: An evaluator is any function that takes the output of a task 
and provides an assessment. It serves as the measure of success for your 
experiment, helping you determine whether your changes have achieved the 
desired results.  You can define multiple evaluators, ranging from LLM-based 
judges to code-based evaluations. The evaluator is central to testing and 
validating the outcomes of your experiment.
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Tracking New Experiments

Effective experiment tracking is essential for measuring progress and avoiding 
regressions. By maintaining a record of each experiment—along with its 
configuration, dataset, evaluators, and results—AI engineers can compare past and 
present performance. This ensures that each change is assessed in context, and 
improvements or declines are easily traceable across different experiments.

Application/Orchestration Changes

Experiments extend beyond simple prompt or model changes—they also allow AI 
engineers to test changes in how the LLM application is orchestrated. This could 
include testing new integrations, API interactions, or external function calls. By 
experimenting with application or orchestration changes, engineers can optimize 
the performance of the overall system, not just the LLM output itself.

For example, an application might include task orchestration changes, such as 
altering how functions are triggered or modifying interaction flows between the LLM 
and external APIs. Experiments help determine whether these changes improve 
response times, reduce errors, or enhance overall user experience.
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Interpreting experiment results requires nuance. Experiments often yield mixed
outcomes—some evaluations may show improvements while others may not. For
example, a change in prompt structure might lead to higher coherence scores but
could slightly reduce factual accuracy.

Most teams hand curate annotated examples for an experiment validation set 
and then use metrics such as an average score, F1, recall or precision on top of 
evaluation results to assess performance. The use of statistical metrics is not 
ubiquitous, as many AI engineers come from different non-stats backgrounds, 
though we do see the use of statistical checks as a growing set of best practices.

Understanding that evaluation results are not always “black and white” is key. 
It’s important to weigh trade-offs and prioritize improvements that align with the 
specific goals of your application. A robust evaluation process will consider the 
impact across multiple metrics and tasks, allowing the AI engineer to decide 
whether the trade-offs make sense for their application.

How to Read Results: It’s Not Black 
and White
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from phoenix.evals import (
    HALLUCINATION_PROMPT_RAILS_MAP,
    HALLUCINATION_PROMPT_TEMPLATE,
    llm_classify,
)
from phoenix.experiments.types import EvaluationResult
from openai import OpenAIModel

class HallucinationEvaluator(Evaluator):
    def evaluate(self, output, dataset_row, **kwargs) -> EvaluationResult:  
        print(“Evaluating outputs”)
        expected_output = dataset_row[“attributes.llm.output_messages”]
        
        # Create a DataFrame with the actual and expected outputs
        df_in = pd.DataFrame(
            {“selected_output”: output, “expected_output”: expected_output}, index=[0]
        )
        # Run the LLM classification
        expect_df = llm_classify(
            dataframe=df_in,
            template=HALLUCINATION_PROMPT_TEMPLATE,
            model=OpenAIModel(model=”gpt-4o-mini”, api_key=OPENAI_API_KEY),
            rails=HALLUCINATION_PROMPT_RAILS_MAP,
            provide_explanation=True,
        )
        label = expect_df[“label”][0]
        score = 1 if label == rails[1] else 0  # Score 1 if output is incorrect
        explanation = expect_df[“explanation”][0]
        
        # Return the evaluation result
        return EvaluationResult(score=score, label=label, explanation=explanation)

In this example, the HallucinationEvaluator class evaluates whether the output 
of an experiment contains hallucinations by comparing it to the expected output 
using an LLM. The llm_classify function runs the eval, and the evaluator returns an 
EvaluationResult that includes a score, label, and explanation.

You can customize LLM evaluators to suit your experiment’s needs, whether 
you’re checking for hallucinations, function choice, or other criteria where an LLM’s 
judgment is valuable. Simply update the template with your instructions and the 
rails with the desired output. You can also have multiple LLM evaluators in a single 
experiment to assess different aspects of the output simultaneously.

LLM Evaluators
LLM evaluators utilize LLMs as judges to assess the success of your experiment. 
These evaluators can either use a prebuilt LLM evaluation template or be customized 
to suit your specific needs.

Here’s an example of a LLM evaluator that checks for hallucinations in the model output:



LLM App Evaluation  |  Page 32 ↑ Table of contents  |  Next section  ↓

Code Based Eval Experiment

Code evaluators are functions designed to assess the outputs of your experiments. 
They allow you to define specific criteria for success, which can be as simple or 
complex as your application requires. Code evaluators are especially useful when 
you need to apply tailored logic or rules to validate the output of your model. 

Creating a custom code evaluator is as simple as writing a Python function. 
By default, this function will take the output of an experiment run as its single 
argument. Your custom evaluator can return either a boolean or a numeric value, 
which will then be recorded as the evaluation score.

For example, let’s say our experiment 
is testing a task that should output 
a numeric value between 1 and 100. 
We can create a simple evaluator 
function to check if the output falls 
within this range.

By passing the in_bounds function 
to run_experiment, evaluations will 
automatically be generated for each 
experiment run, indicating whether 
the output is within the allowed range. 
This allows you to quickly assess the 
validity of your experiment’s outputs 
based on custom criteria.

def in_bounds(output):
    return 1 <= output <= 100

experiment = arize_client.run_
experiment(
    space_id=SPACE_ID,
    dataset_id=DATASET_ID,
    task=run_task,
    evaluators=[in_bounds],
    experiment_name=experiment_name,
)
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Synchronous: The synchronous running of an experiment runs one after another.

Async: The asynchronous running of an experiment runs parallel.

Run linear, one after another

Run in parallel at the same time

Async Vs Sync Tasks and Evals

Keep these in mind when choosing between synchronous and asynchronous 
experiments. 

Synchronous: Slower but easier to debug. When you are building your tests 
these are inherently easier to debug. Start with synchronous and then make 
them asynchronous.

Asynchronous: Faster. When timing and speed of the tests matter. Make the 
tasks and/or evals asynchronous and you can 10x the speed of your runs.

Task Eval

Task Eval

Task Eval

Task Eval

Task Eval

Task Eval
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Setting up CI/CD pipelines for LLMs helps you maintain control as your applications 
evolve. Just like in traditional software, automated testing is crucial to catch issues 
early. With Arize, you can create experiments that automatically validate changes—
whether it's a tweak to a prompt, model, or function—using a curated dataset and 
your preferred evaluation method. These tests can be integrated with  
GitHub Actions, so they run automatically when you push a change, giving you 
confidence that your updates are solid without the need for manual testing.

GitHub Actions allow you to automate workflows directly from your GitHub 
repository. It enables you to build, test, and deploy your code based on specific 
events (such as code pushes, pull requests, and more).

KEY CONCEPTS OF GITHUB ACTIONS:

• Workflows: Automated processes that you define in your repository.
• Jobs: A workflow is composed of one or more jobs that can run sequentially or 

in parallel.
• Steps: Jobs contain steps that run commands in the job's virtual environment.
• Actions: The individual tasks that you can combine to create jobs and 

customize your workflow. You can use actions defined in the GitHub 
marketplace or create your own.

CI/CD for Automated Experimentation

https://docs.arize.com/arize/llm-experiments-and-testing/how-to-experiments/ci-cd-for-automated-experiments/github-action-basics
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Datasets

Datasets are integral to evaluation and experimentation. 

They are collections of examples that provide the inputs, outputs,and any other 
attributes needed for assessing your application. Each example within a dataset 
represents a single data point, consisting of an inputs dictionary, an optional output 
dictionary, and an optional metadata dictionary. The optional output dictionary 
often contains the expected LLM application output for the given input.

Datasets allow you to collect data from production, staging, evaluations, and 
even manually. The examples collected are then used to run experiments and 
evaluations to track improvements.

Use datasets to:
• Store evaluation test cases for your eval script instead of managing large 

JSONL or CSV files
• Capture generations to assess quality manually or using LLM-graded evals
• Store user reviewed generations to find new test cases

CREATING DATASETS
There are various ways to get started with datasets:

Manually Curated Examples
This is how we recommend you start. From building your application, you probably 
have an idea of what types of inputs you expect your application to be able to 
handle, and what "good" responses look like. You probably want to cover a few 
different common edge cases or situations you can imagine. Even 20 high quality, 
manually curated examples can go a long way.

Historical Logs
Once you ship an application, you start gleaning valuable information: how users are 
actually using it. This information can be valuable to capture and store in datasets. 
This allows you to test against specific use cases as you iterate on your application.

If your application is going well, you will likely get a lot of usage. How can you 
determine which datapoints are valuable to add? There are a few heuristics you 
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Promoting Changes

Promoting changes in LLM applications requires rigorous 
evaluation-driven testing to ensure new updates are stable, 
accurate, and aligned with the application’s goals. Given the 
non-deterministic nature of LLMs, promoting changes based 
on evaluation metrics needs to be done thoughtfully, balancing 
between ensuring reliability and avoiding unnecessary roadblocks.

Writing Eval-Driven Development Tests
To promote changes effectively, it's crucial to integrate GitHub 
Actions and evaluation-driven tests into your development 
workflow. Since LLMs are non-deterministic, running a test once 
isn’t enough. The key is passing evaluation tests consistently. AI 
engineers need to run evaluations multiple times to ensure that 
results are consistent across runs. Changes should pass a certain 
number of test runs to guarantee stability and avoid promoting 
changes based on one-off good results.

can follow. If possible, try to collect end user feedback. You can 
then see which datapoints got negative feedback. That is super 
valuable! These are spots where your application did not perform 
well. You should add these to your dataset to test against in the 
future. You can also use other heuristics to identify interesting 
datapoints - for example, runs that took a long time to complete 
could be interesting to analyze and add to a dataset.

Synthetic Data
Once you have a few examples, you can try to artificially generate 
examples to get a lot of datapoints quickly. It's generally advised 
to have a few good handcrafted examples before this step, as the 
synthetic data will often resemble the source examples in some way.
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What Experiments Should You Run in CI/CD?
When running experiments in your CI/CD pipeline, the goal is to simulate 
production as closely as possible before deploying changes. Some experiments 
to include:

Ground Truth Evals: These should be run regardless of what’s being 
tested. If the application fails on ground truth comparisons, something is 
fundamentally broken, and changes should not be promoted.

Threshold-Based Experiments: Set up experiments to detect if certain 
evaluation metrics (e.g., hallucinations or correctness) pass a defined 
threshold. For instance, if hallucination rates spike by 50% compared to a 
baseline, it may indicate a significant issue that needs addressing before 
promoting the change.

Should You Block PRs on Failures?
Blocking PRs on evaluation failures should be handled similarly to traditional unit 
tests. Some evaluation failures, like major issues in ground truth comparisons 
or significant metric spikes, should block PRs. However, not all evaluation tests 
should block a PR—some are better suited for post-deployment monitoring to 
avoid unnecessary bottlenecks.

This is where the paradigm shift comes in: LLM evaluations are your new unit 
tests. While teams may not block changes for every failure, they represent real 
tests that detect critical issues in your application, ensuring that only high-quality 
updates are promoted.

Paradigm Shift: Detaching Experiments from CI/CD

In traditional software development, Continuous Integration and Continuous 
Deployment (CI/CD) pipelines are designed to catch issues early, ensuring that 
code changes don’t introduce new bugs or degrade performance. However, with 
LLM applications, this approach requires a significant shift. Unlike traditional 
applications, LLM applications are not only affected by code changes but also by 
model updates, or input drift in production. As a result, experiments need to be run 
regularly in order to detect performance shifts, even when there aren’t associated 
pull requests or active development changes.
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Production

As LLM applications become more common, so 
too do jailbreak attempts, exploitations of these 
apps, and harmful responses. More and more 
companies are falling prey to damaging news 
stories driven by their chatbots selling cars for $1, 
writing poems critical of their owners, or dealing out 
disturbing replies.

Fortunately, there is a solution to this problem: LLM 
guardrails. LLM guardrails allow you to protect your 
application from potentially harmful inputs, and 
block damaging outputs before they’re seen by 
a user. As LLM jailbreak attempts become more 
common and more sophisticated, having a robust 
guardrails approach is critical.

LLM guardrails work in real-time to either catch 
dangerous user inputs or screen model outputs. 
There are many different types of guards that 
can be employed, each specializing in a different 
potential type of harmful input or output.

Guardrails

https://news.ycombinator.com/item?id=38681450
https://www.theregister.com/2024/01/23/dpd_chatbot_goes_rogue/
https://www.forbes.com/sites/antoniopequenoiv/2024/02/28/microsoft-investigates-harmful-chatbot-responses-the-latest-chatbot-blunder-from-top-ai-companies/
https://www.forbes.com/sites/antoniopequenoiv/2024/02/28/microsoft-investigates-harmful-chatbot-responses-the-latest-chatbot-blunder-from-top-ai-companies/
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Balancing Act of Guards
Implementing guardrails for AI systems is a delicate balancing act. While these 
safety measures are important for responsible AI deployment, finding the right 
configuration is necessary to maintain both functionality and security. 

It’s important to resist the temptation to over-index on guards. It may seem 
prudent to implement every conceivable safety measure, but this approach can 
be counterproductive. Excessive guardrails risk losing the intent of the user’s initial 
request or the value of the app’s output. Instead, we advise starting with the most 
critical guards and expanding judiciously as needed. Tools like Arize’s AI search can 
be helpful in identifying clusters of problematic inputs to allow for targeted guard 
additions over time.

Common input guard use cases include:
• Detecting and blocking jailbreak attempts
• Preventing prompt injection attempts
• Removing user personally identifiable information (PII) before it reaches a model

Common output guard use cases include:
• Removing toxic or hallucinated responses
• Removing mentions of a competitor’s product
• Screening for relevancy in responses
• Removing NSFW text
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Types of Guards

AI guardrails span input validation and sanitization — like syntax and format checks, 
content filtering, jailbreak attempt detection — and output monitoring and filtering, 
which can prevent damage, ensure performance, or evolve over time through 
dynamic guards. Let’s explore the main categories of guards and their applications.

Input Validation and Sanitization
Input validation and sanitization serve as the first line of defense in AI safety. These 
guards ensure that the data fed into your model is appropriate, safe, and  
in the correct format. 

Syntax and Format Checks
While basic, these checks are important for maintaining system integrity. They 
verify that the input adheres to the expected format and structure. For instance, 
if your model expects certain parameters, what happens when they’re missing? 
Consider a scenario where your RAG retriever fails to return documents, or your 
structured extractor pulls the wrong data. Is your model prepared to handle this 
malformed request? Implementing these checks helps prevent errors and ensures 
smooth operation.

Content Filtering
This guard type focuses on removing sensitive or inappropriate content before 
it reaches the model. Detecting and removing personally identifiable information 
can help avoid potential privacy issues, and filtering NSFW or toxic language can 
ensure more appropriate responses from your LLM. We recommend implementing 
this guard cautiously – overzealous filtering might inadvertently alter the user’s 
original intent. Often, these types of guards are better suited filtering the outputs of 
your application rather than the inputs.

Jailbreak Attempt Detection
These are the guards that prevent massive security breaches and keep your 
company out of news headlines. Many collections of jailbreak prompts are available, 
and even advanced models can fail on up to 40% of these publicly-documented 
attacks. As these attacks constantly evolve, implementing effective guards can 
be challenging; we recommend using an embedding-based guard like Arize’s, 
which can adapt to changing strategies. At minimum, use a guard connected to a 
common library of prompt injection prompts, such as Rebuff.
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Ensuring Performance
When it comes to performance, developers face a choice between using guards 
to improve your app’s output in real-time or running offline evaluations to optimize 
your pipeline or prompt template. Real-time guards introduce more latency and 
cost but offer immediate improvements. Offline evaluations allow for pipeline 
optimization without added latency, though there may be a delay between issue 
discovery and resolution. We recommend starting with offline evaluations and only 
adding performance guards if absolutely necessary.

Hallucination Prevention: Guards can prevent hallucinations by comparing 
outputs with reference texts or, when unavailable, cross-referencing with 
reliable sources like Wikipedia.

Critic Guards: This broad category involves using a separate LLM to critique 
and improve your pipeline’s output before sending it to the user. These can 
be instructed to focus on relevancy, conciseness, tone, and other aspects of 
the response.

System Prompt Protection: Some attacks try to expose the prompt 
templates your system uses. Adding a guard to detect system prompt 
language in your outputs can mitigate this risk. Just be sure to avoid 
exposing this same template within your guard’s code!

NSFW or Harmful Language Detection: Allowing this type of language in 
your app’s responses can be extremely harmful to user experience and your 
brand. Use guards to help identify this language.

Competitor Mentions: Depending on your use case, mentioning competitors 
might be undesirable. Guards can be set up to filter out such references.

Output Monitoring and Filtering
Output guards generally fall into two categories: preventing damage, and  
ensuring performance.

Preventing Damage
Examples of this include:
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Manually updating guards to counter new threats is a near impossible task, quickly 
becoming unsustainable as attack vectors multiply. Fortunately, two approaches 
allow us to create adaptive guards that can keep pace with emerging threats: few-
shot prompting and embedding-based guards.

While static guards are great at filtering out predefined content like NSFW 
language, they struggle when faced with sophisticated attacks like jailbreak 
attempts, prompt injection, and more. These dynamic threats require equally 
dynamic defenses that can evolve alongside the attackers’ strategies.

Few-Shot Prompting
This technique involves adding examples of recent jailbreak attempts or other 
attacks directly into your guard’s prompt. By exposing the guard to real-world 
attack patterns, you improve its ability to recognize and thwart similar threats in the 
future.

This is a more sophisticated approach to dynamic protection. It involves comparing 
the embedding of a user’s input against a database of known attack embeddings. 
By checking the similarity between these representations, the system can identify 
and block potentially malicious inputs that exceed a predefined similarity threshold. 
Arize has developed an easy-to-use but powerful implementation of this concept 
with our ArizeDatasetEmbeddings Guard.

While dynamic guards offer powerful protection, they come with a few 
considerations:
• Increased computational cost due to larger models or embedding generation.
• Higher latency, potentially impacting response times.
• The need for ongoing maintenance and updates to the attack prompt database.

Dynamic Guards
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Dataset Embeddings 
Guard

Few Shot LLM
Guard

General LLM
Guard

Ad
va

nt
ag

es

Customizable: Customize 
this Guard to your specific 
use case by providing few 
shot examples from real 
customer chats

Easy to update: Tackle 
drift by updating the 
Guard with new few shot 
examples as the models 
and failure modes evolve 
over time

Low latency / cost: Does 
not rely on a large model 
to evaluate the input 
message

Customizable: Same as 
Dataset Embeddings

Easy to update: Same as 
Dataset Embeddings

Fewer false positives: 
Less likely to produce 
false positives, e.g. can 
differentiate between
jailbreak attempts and 
role-play

Customizable: Instantiate 
with a custom prompt for 
a specific use case

Opportunity to optimize 
performance: Try our 
prompt playground to 
optimize performance 
via prompt engineering 
against a golden dataset

Di
sa

dv
an

ta
ge

s

Performance depends on 
the quality of the source 
dataset

LLM evaluator call 
introduces cost and 
latency

Performance depends on 
the quality of the source 
dataset

LLM evaluator call 
introduces cost and 
latency

Performance depends on 
the quality of the prompt

LLM evaluator call 
introduces cost and 
latency

Prompt may need to be 
continually re-engineered 
as models and use cases 
evolve

It’s important to weigh these factors against the level of protection required for your 
specific use case.

Dynamic Guards continued
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Continuous Improvement  
Self-Improving Evaluations

In the world of LLM evaluation, self-improving evaluations represent an approach 
where models not only undergo testing but also learn from their mistakes and 
continuously improve their own evaluation methods. The idea behind this is to create 
an adaptive evaluation system that refines itself over time, leading to more accurate 
assessments of LLM performance.

1. CONTINUOUS LEARNING FROM ERRORS
Self-improving evals work by systematically identifying areas where the model performs 
poorly and using that feedback to adjust future evaluations. For example, if a model 
frequently makes errors in answering complex questions, the evaluation framework can 
highlight those areas and provide focused feedback to guide future adjustments.

This approach allows the evaluation framework to learn and evolve, enabling:

Identification of weak points: Pinpointing tasks or datasets where the 
model struggles the most.

Dynamic refinement: The evaluation framework adjusts its criteria or 
datasets, incorporating harder examples or edge cases.

Self-correction: Over time, the system improves by updating its metrics 
or test cases based on the model's performance, continuously raising the 
standard for evaluation.

2. FEEDBACK LOOPS
A crucial aspect of self-improving evals is the use of feedback loops. These loops 
allow models to learn from the evaluations themselves. Feedback on where the model 
underperforms can guide fine-tuning or retraining efforts, leading to more effective 
performance improvements.

By embedding feedback loops into the evaluation process, you can ensure that models 
become more robust over time. This is particularly important for models that will encounter 
changing environments or evolving datasets, as they will need to adapt in real time.
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Improving LLM Evaluation Systems

Improving LLM evaluation systems is usually done by 
either iterating on the prompt template used, adding 
few-shot examples, or by fine-tuning the underlying 
eval model.

FEW-SHOT PROMPTING EVALUATIONS
Few-shot prompting refers to the practice of providing 
an LLM with a small number of examples (or shots) 
to help it understand the task at hand. In few-shot 
prompting evaluations, the goal is to see how well 
the model can generalize and perform based on very 
limited input data.

1. Setting Up Few-Shot Prompting Evals
In this evaluation method, the model is given a few 
labeled examples as part of the prompt to guide its 
response. For example, in evaluating a summarization 
model, you might provide two or three examples of 
text along with their summaries before asking the 
model to generate a summary for a new text. The 
evaluation then measures how well the model learns 
from these few examples to generate accurate 
outputs for unseen data.

Few-shot prompting evaluations simulate real-
world use cases where large training datasets are 
unavailable. This is crucial for:

• Rapid prototyping: Evaluating how a model 
handles new tasks with minimal input.

• Generalization: Testing the model's ability to 
generalize from very little data.
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2. Curating a Dataset for Few-Shot Evaluations
Curating a dataset for few-shot evaluation is about finding the right balance 
between variety and representativeness. Unlike larger datasets, where quantity 
might mask inconsistencies, few-shot datasets must be carefully selected to 
represent the full scope of the task. You can do so by either manually curating 
them or hand writing examples, or use an LLM to synthetically generate them.

Steps for curating an effective few-shot dataset:

By carefully curating a few-shot dataset, you allow the model to demonstrate 
its ability to quickly learn and adapt to new information, which is a critical 
component in measuring its overall robustness.

You are a data analyst. You are using LLMs to summarize a document. 
Create a CSV of 20 test cases with the following columns:

1. Input: The full document text, usually five paragraphs of articles 
about beauty products.

2. Prompt Variables: A JSON string of metadata attached to the 
article, such as the article title, date, and website URL

3. Output: The one line summary

Diverse examples: Include a range of inputs that cover different types of 
challenges the model may face. This ensures that the few examples are 
representative of broader tasks.

Consistency in ground truth: Ensure that the correct answers (ground 
truth) provided for each example are consistent and well-defined, as the 
model will be evaluated on how well it follows these examples.

Edge cases: Incorporate examples that test the model’s limits, including 
rare or tricky scenarios that might confuse it.
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3. Updating Prompts with Examples
How do you determine which examples to add to your prompt? You can select 
your examples based on the cosine similarity between each of the given 
prompt variables. You can add examples of queries that are very similar to the 
user query to increase your precision.

You can also use an LLM to summarize the examples and insert them as 
additional instructions. As you add additional examples, you can start catching 
more and more edge cases, add them to your prompt, and re-test them 
against your golden dataset to ensure reliability.

In this task, you will be presented with a query, a reference text 
and an answer. The answer is generated to the question based on the 
reference text. The answer may contain false information. You must 
use the reference text to determine if the answer to the question 
contains false information, if the answer is a hallucination of facts. 
A 'hallucination' refers to
an answer that is not based on the reference text or assumes 
information that is not available in
the reference text. Your response should be a single word: either 
"factual" or "hallucinated", and
it should not include any other text or characters. "hallucinated" 
indicates that the answer
provides factually inaccurate information to the query based on the 
reference text. "factual"
indicates that the answer to the question is correct relative to the 
reference text, and does not contain made up information.

Use the examples below for reference:
{examples}

Here is the query, reference, and answer.
   # Query: {query}
   # Reference text: {reference}
   # Answer: {response}

Is the answer above factual or hallucinated based on the query and 
reference text?
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4. Fine tuning the evaluation model
The last step is fine-tuning the evaluator. Fine tuning the evaluator model is similar 
to fine tuning the LLM used for the application, and can be done using the data 
points collected earlier.

This also allows teams to use smaller language models, which reduces latency and 
cost while maintaining similar levels of performance. As the dataset of corrections 
increase, AI engineers can connect their evaluator to the CI/CD pipeline and 
continuously run fine tuning jobs to increase the precision of their evaluator.

Use Cases
Evaluating Agents

BUILDING EVALUATORS FOR EACH STEP
Evaluating the skill steps of an agent is similar to evaluating those skills outside of 
the agent. If your agent has a RAG skill, for example, you would still evaluate both 
the retrieval and response generation steps, calculating metrics like document 
relevance and hallucinations in the response.
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UNIQUE CONSIDERATIONS WHEN  
EVALUATING AGENTS
Beyond skills, agent evaluation becomes more unique.

In addition to evaluating the agent’s skills, you need to 
evaluate the router and the path the agent takes.

The router should be evaluated on two axes: first, its 
ability to choose the right skill or function for a given 
input; second, its ability to extract the right parameters 
from the input to populate the function call.

Choosing the right skill is perhaps the most important 
task and one of the most difficult. This is where your 
router prompt (if you have one) will be put to the test. 
Low scores at this stage usually stem from a poor 
router prompt or unclear function descriptions, both of 
which are challenging to improve.

Extracting the right parameters is also tricky, 
especially when parameters overlap. Consider adding 
some curveballs into your test cases, like a user 
asking for an order status while providing a shipping 
tracking number, to stress-test your agent.

Arize provides built-in evaluators to measure tool call 
accuracy using an LLM as a judge, which can assist at 
this stage.
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TOOL_CALLING_PROMPT_TEMPLATE = """
You are an evaluation assistant evaluating questions and tool calls to
determine whether the tool called would answer the question. The tool
calls have been generated by a separate agent, and chosen from the 
list of tools provided below. It is your job to decide whether that 
agent chose the right tool to call.

    [BEGIN DATA]
    ************
    [Question]: {question}
    ************
    [Tool Called]: {tool_call}
    [END DATA]

Your response must be single word, either "correct" or "incorrect",
and should not contain any text or characters aside from that word.
"incorrect" means that the chosen tool would not answer the question,
the tool includes information that is not presented in the question,
or that the tool signature includes parameter values that don't match
the formats specified in the tool signatures below.

"correct" means the correct tool call was chosen, the correct 
parameters were extracted from the question, the tool call generated 
is runnable and correct, and that no outside information not present 
in the question was used in the generated question.

    [Tool Definitions]: {tool_definitions}
"""

Lastly, evaluate the path the agent takes during execution. Does it repeat steps? 
Get stuck in loops? Return to the router unnecessarily? These “path errors” can 
cause the worst bugs in agents.

To evaluate the path, we recommend adding an iteration counter as an evaluation. 
Tracking the number of steps it takes for the agent to complete different types of 
queries can provide a useful statistic.

However, the best way to debug agent paths is by manually inspecting traces. 
Especially early in development, using an observability platform and manually 
reviewing agent executions will provide valuable insights for improvement.
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Retrieval Augmented Generation (RAG) Evaluation

RAG applications need to be evaluated on two critical aspects.

• Retrieval Evaluation: To assess the accuracy and relevance of the 
documents that were retrieved. Examples:

You are comparing a reference text to a question and trying to 
determine if the reference text contains information relevant to 
answering the question. Here is the data:

   [BEGIN DATA]
   ************
   [Question]: {query}
   ************
   [Reference text]: {reference}
   [END DATA]

Compare the Question above to the Reference text. You must determine 
whether the Reference text contains information that can answer the 
Question. Please focus on whether the very specific question can be 
answered by the information in the Reference text.

Your response must be single word, either "relevant" or "unrelated", 
and should not contain any text or characters aside from that word.

"unrelated" means that the reference text does not contain an answer to 
the Question.

"relevant" means the reference text contains an answer to the Question.

Groundedness 
or Faithfulness

The extent or faithfulness to which the 
LLM's response aligns with the retrieved 
context.

Binary classification (fiathful/unfaithful)

Context 
relevance

Guages how relevant the retirieved 
context supports the user's query.

Binary classification (fiathful/unfaithful). 
Ranking metrics: Mean Reciprocal Rank 
(MRR), Precision @ K, Mean Average 
Precision (MAP), Hit rate, Normalized 
Dicounted Cumulative Gain (NDCG)
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• Response Evaluation: To measure the appropriateness of the response 
generated by the system when the context was provided. Examples:

You are given a question, an answer and reference text. You must 
determine whether the given answer correctly answers the question 
based on the reference text. Here is the data:

   [BEGIN DATA]
   ************
   [Question]: {question}
   ************
   [Reference]: {context}
   ************
   [Answer]: {sampled_answer}
   [END DATA]

Your response must be a single word, either "correct" or 
"incorrect", and should not contain any text or characters aside 
from that word.

"correct" means that the question is correctly and fully answered 
by the answer.

"incorrect" means that the question is not correctly or only 
partially answered by the answer.

Ground Truth-
Based
Metrics

The extent or faithfulness to which 
the LLM's response aligns with the 
retrieved context.

Accuracy, Precision, Recall, F1 score

Answer Relevance Guages how relevant the retirieved 
context supports the user's query. Binary classification (Relevant/Irrelevant

QA Correctness
Detectsw hether a question was 
correctlly answered by the system 
based on the retrieved data.

Binary classification (Correct/Incorrect)

Hallucinations To detect LLM hallucinations relative to 
retrieved context.

Binary classification (Factual/
Hallucinated)
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To start your AI Observability and Evaluation journey, 
sign up for a free trial or schedule a demo.

To receive more educational content, Sign up for our bi-monthly 
newsletter “The Evaluator”

Getting Started

Given the rapid evolution of generative AI and the LLMOps space, best 
practices will likely evolve over time. 

Here are a few resources to ask questions and keep up with the latest:

Arize AI 
Community

→

Product 
Documentation

→→

LLM-Focused 
Industry 

Certifications

http://arize.com/join
https://arize.com/request-a-demo/
https://arize.com/blog/#blog-subscribe-modal
https://arize.com/
https://www.linkedin.com/company/arizeai/
https://x.com/arizeai
https://arize-ai.slack.com/archives/C016XGKCG0P
https://docs.arize.com/arize
https://courses.arize.com/courses/
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