
LLM App
Evaluation
A practical guide to building and implementing
evaluation strategies for AI applications

LLM App
Evaluation

The Definitive Guide to

Introduction

LLM Eval Type

LLM as a Judge Eval 3

Code-based Eval 4

Eval Output Type 6

Offline vs Online Evaluation 8

Choosing Between Online and Offline Evaluation 10

Model Benchmarks vs Task Evals 11

What are you Evaluating? 13

Pre-Production

Human Annotation and Curated Datasets 13

Human Annotation in LLM Evaluation 15

Creating and Validating Synthetic Datasets as Golden Datasets 17

Best Practices for Synthetic Dataset Use 19

Benchmarking LLM Evaluation 20

Evals with Explanations 24

Eval Hierarchy 24

Building a Robust Evaluation Approach 25

Choosing an Evaluation Model: Seq2Seq vs Token Classifiers and More 27

CI/CD

Experiments 28

Application/Orchestration Changes 29

Tracking New Experiments 29

Table of contents

Table of contents continued
CI/CD continued

How to Read Results: It’s Not Black and White 30

LLM Evaluators 31

Code Based Eval Experiment 32

Async vs Sync Tasks and Evals 33

CI/CD for Automated Experimentation 34

Datasets 35

Promoting Changes 36

Paradigm Shift: Detaching Experiments from CI/CD 37

Production

Guardrails 38

Types of Guards 40

Dynamic Guards 42

Continuous Improvement

Self-Improving Evaluations 44

Improving LLM Evaluation Systems 45

Use Cases

Evaluating Agents 48

Retrieval Augmented Generation (RAG) Evaluation 51

LLM App Evaluation | Page 1 ↑ Table of contents | Next section ↓

Why are evals important?

Large language models (LLMs) are an incredible tool for developers
and business leaders to create new value for consumers. They
make personal recommendations, translate between structured and
unstructured data, summarize large amounts of information, and do so
much more.

As the applications multiply, so does the importance of measuring the
performance of LLM-powered systems.

Developers using LLMs build applications to respond to user queries,
transform or generate content, and classify and structure data.

It’s extremely easy to start building an AI application using LLMs
because developers no longer have to collect labeled data or train a
model. They only need to create a prompt to ask the model for what
they want. However, this comes with tradeoffs. LLMs are generalized
models that aren’t fine tuned for a specific task. With a standard
prompt, these applications demo really well, but in production
environments, they often fail in more complex scenarios.

You need a way to judge the quality of your LLM outputs. An example
would be judging the quality of these chat outputs on relevance,
hallucination %, and conversation correctness.

When you adjust your prompts or retrieval strategy, you will know
whether your application has improved—and by how much—using
evaluation. The dataset you are evaluating determines how trustworthy
and generalizable your evaluation metrics are to production use. A
limited dataset could showcase high scores on evaluation metrics, but
perform poorly in real-world scenarios.

Introduction

LLM App Evaluation | Page 2 ↑ Table of contents | Next section ↓

While at first glance the shift from traditional software testing methods like integration
and unit testing to LLM application evaluations may seem drastic, both approaches
share a common goal: ensuring that a system behaves as expected and delivers
consistent, reliable outcomes. Fundamentally, both testing paradigms aim to validate
the functionality, reliability, and overall performance of an application.

In traditional software engineering:

Unit Testing isolates individual components of the code, ensuring that each
function works correctly on its own.

Dynamic Behavior Evaluation: Rather than testing deterministic code, LLM
evaluations focus on how the application responds to various inputs in non-
deterministic situations, examining not just accuracy but also context
relevance, coherence, and product level user experience.

Integration Testing focuses on how different modules or services work
together, validating the correctness of their interactions.

Task or Product Level Assessments: Evaluations are now centered on the
application’s ability to complete user-specific tasks, such as resolving queries,
generating coherent responses, or interacting seamlessly with external
systems (e.g., function calling). The eval is often a product experience
assessment of how well the AI is working on intelligent tasks.

In the world of LLM applications, these goals remain, but the complexity of
behavior increases due to the non-deterministic nature of LLMs.

Both paradigms emphasize predictability and consistency, with the key difference
being that LLM applications require dynamic, context-sensitive evaluations, as
their outputs can vary with different inputs. However, the underlying principle
remains: ensuring that the system (whether it’s traditional code or an LLM-driven
application) performs as designed, handles edge cases, and delivers value reliably.

Paradigm Shift

LLM App Evaluation | Page 3 ↑ Table of contents | Next section ↓

LLM as a Judge Eval

Often called LLM as a judge, LLM-assisted evaluation uses AI to evaluate AI — with
one LLM evaluating the outputs of another and providing explanations.

LLM-assisted evaluation is often needed because user feedback or any other
“source of truth” is extremely limited and often nonexistent (even when possible,
human labeling is still expensive) and it is easy to make LLM applications complex.

LLM Eval Types

Fortunately, we can use the power of LLMs to automate the evaluation. In this
eBook, we will delve into how to set this up and make sure it is reliable.

While using AI to evaluate AI may sound circular, we have always had human
intelligence evaluate human intelligence (for example, at a job interview or your
college finals). Now AI systems can finally do the same for other AI systems.

LLM App Evaluation | Page 4 ↑ Table of contents | Next section ↓

Code-based Eval

Code-based LLM evaluations are methods that use programming code to assess
the performance, accuracy, or behavior of large language models (LLMs). These
evaluations typically involve creating automated scripts or CI/CD test cases to
measure how well an LLM performs on specific tasks or datasets. A code-based
eval is essentially a python or JS/TS unit test.

Code-based evaluation is sometimes preferred as a way to reduce costs as it
does not introduce token usage or latency. When evaluating a task such as code
generation, a code-based eval will often be the preferred method since it can

You are given a question, an answer and reference text. You must
determine whether the given answer correctly answers the question based
on the reference text. Here is the data:
 [BEGIN DATA]

 [Question]: {question}

 [Reference]: {context}

 [Answer]: {sampled_answer}
 [END DATA]
Your response must be a single word, either “correct” or “incorrect”,
and should not contain any text or characters aside from that word.
“correct” means that the question is correctly and fully answered by
the answer. “incorrect” means that the question is not correctly or
only partially answered by the answer.

The process here is for LLMs to generate synthetic ground truth that can be used
to evaluate another system. Which begs a question: why not use human feedback
directly? Put simply, because you often do not have enough of it.

Getting human feedback on even one percent of your input/output pairs is a
gigantic feat. Most teams don’t even get that. In such cases, LLM-assisted evals
help you benchmark and test in development prior to production. But in order for
this process to be truly useful, it is important to have evals on every LLM sub-call,
of which we have already seen there can be many.

LLM App Evaluation | Page 5 ↑ Table of contents | Next section ↓

be hard coded, and follows a set of rules. However, for evaluation that can be
subjective, like hallucination, there’s no code evaluator that could provide that label
reliably, in which case LLM as a Judge needs to be used.

Common use cases for code-based evaluators include:

LLM APPLICATION TESTING
Code-based evaluations can test the LLM’s performance at various levels—
focusing on ensuring that the output adheres to the expected format, includes
necessary data, and passes structured, automated tests.

Test Correct Structure of Output: In many applications, the structure of the
LLM’s output is as important as the content. For instance, generating JSON-
like responses, specific templates, or structured answers can be critical for
integrating with other systems.

Test Specific Data in Output: Verifying that the LLM output contains or
matches specific data points is crucial in domains such as legal, medical, or
financial fields where factual accuracy matters.

Structured Tests: Automated structured tests can be employed to validate
whether the LLM behaves as expected across various scenarios. This might
involve comparing the outputs to expected responses or validating edge cases.

EVALUATING YOUR EVALUATOR
Evaluating the effectiveness of your evaluation strategy ensures that you’re
accurately measuring the model’s performance and not introducing bias or missing
crucial failure cases. Code-based evaluation for evaluators typically involves
setting up meta-evaluations, where you evaluate the performance or validity of the
evaluators themselves.

In order to evaluate your evaluator, teams need to create a set of hand annotated
test datasets. These test datasets do not need to be large in size, 100+ examples
are typically enough to evaluate your evals. In Arize Phoenix, we include test
datasets with each evaluator to help validate the performance for each model type.

We recommend this guide for for a more in depth review of how to improve and
check your evaluators.

https://eugeneyan.com/writing/llm-evaluators/

LLM App Evaluation | Page 6 ↑ Table of contents | Next section ↓

Eval Output Type

Depending on the situation, the evaluation can return different types of results:

Categorical (Binary): The evaluation results in a binary output, such as true/
false or yes/no, which can be easily represented as 1/0. This simplicity makes
it straightforward for decision-making processes but lacks the ability to
capture nuanced judgements.

Categorical (Multi-class): The evaluation results in one of several
predefined categories or classes, which could be text labels or distinct
numbers representing different states or types.

Continuous Score: The evaluation results in a numeric value within a set
range (e.g. 1-10), offering a scale of measurement. We don’t recommend
using this approach.

Categorical Score: A value of either 1 or 0. The categorical score can
be pretty useful as you can average your scores but don’t have the
disadvantages of continuous range.

LLM App Evaluation | Page 7 ↑ Table of contents | Next section ↓

Although score evals are an option, we recommend using categorical evaluations
in production environments. LLMs often struggle with the subtleties of continuous
scales, leading to inconsistent results even with slight prompt modifications or
across different models. Repeated tests have shown that scores can fluctuate
significantly, which is problematic when evaluating at scale.

Categorical evals, especially multi-class, strike a balance between simplicity and
the ability to convey distinct evaluative outcomes, making them more suitable for
applications where precise and consistent decision-making is important.

class ExampleResult(Evaluator):
 def evaluate(self, input, output, dataset_row, metadata, **kwargs) ->
EvaluationResult:
 print("Evaluator Using All Inputs")
 return(EvaluationResult(score=score, label=label,
explanation=explanation)

class ExampleScore(Evaluator):
 def evaluate(self, input, output, dataset_row, metadata, **kwargs) ->
EvaluationResult:
 print("Evaluator Using A float")
 return 1.0

class ExampleLabel(Evaluator):
 def evaluate(self, input, output, dataset_row, metadata, **kwargs) ->
EvaluationResult:
 print("Evaluator label")
 return "good"

LLM App Evaluation | Page 8 ↑ Table of contents | Next section ↓

Online vs Offline Evaluation

Evaluating LLM applications across their lifecycle requires a two-pronged approach:
offline and online. Offline LLM evaluation generally happens during pre-production, and
involves using curated or outside datasets to test the performance of your application.
Online LLM evaluation runs once your app is in production, and is run on production
data. The same evaluator can be used to run online and offline evaluations.

OFFLINE LLM EVALUATION
Offline LLM evaluation generally occurs during the development and testing
phases of the application lifecycle. It involves evaluating the model or system in
controlled environments, isolated from live, real-time data. The primary focus of
offline evaluation is pre-deployment validation CI/CD, enabling AI engineers to
test the model against a predefined set of inputs (like golden datasets) and gather
insights on performance consistency before the model is exposed to real-world
scenarios. This process is crucial for:

Note: The "offline" part of "offline evaluations" refers to the data that is being used
to evaluate the application. In offline evaluations, the data is pre-production data
that has been curated and/or generated, instead of production data captured

Prompt and Output Validation: Offline tests allow teams to evaluate prompt
engineering changes and different model versions before committing them to
production. AI engineers can experiment with prompt modifications and evaluate
which variants produce the best outcomes across a range of edge cases.

Golden Datasets: Evaluating LLMs using golden datasets (high-quality,
annotated data) ensures that the LLM application performs optimally
in known scenarios. These datasets represent a controlled benchmark,
providing a clear picture of how well the LLM application processes specific
inputs, and enabling engineers to debug issues before deployment.

Pre-production Check: Offline evaluation is well-suited for running CI/CD
tests on datasets that reflect complex user scenarios. Engineers can check
the results of offline tests and changes prior to pushing those changes to
production.

LLM App Evaluation | Page 9 ↑ Table of contents | Next section ↓

ONLINE LLM EVALUATION
Online LLM evaluation, by contrast, takes place in real-time, during production.
Once the application is deployed, it starts interacting with live data and real
users, where performance needs to be continuously monitored. Online evaluation
provides real-world feedback that is essential for understanding how the
application behaves under dynamic, unpredictable conditions. It focuses on:

Continuous Monitoring: Applications deployed in production environments
need constant monitoring to detect issues such as degradation in
performance, increased latency, or undesirable outputs (e.g., hallucinations,
toxicity). Automated online evaluation systems can track application outputs
in real time, alerting engineers when specific thresholds or metrics fall outside
acceptable ranges.

Real-Time Guardrails: LLMs deployed in sensitive environments may
require real-time guardrails to monitor for and mitigate risky behaviors like
generating inappropriate, hallucinated, or biased content. Online evaluation
systems can incorporate these guardrails to ensure the LLM application
proactively being protected rather than reactively.

from runs of your application. Because of this, the same evaluator can be used for
offline and online evaluations. Having one unified system for both offline and online
evaluation allows you to easily use consistent evaluators for both techniques.

LLM App Evaluation | Page 10 ↑ Table of contents | Next section ↓Evaluation Ebook ↑ Table of contents | Next section ↓

While it may seem advantageous to apply online evaluations universally, they
introduce additional costs in production environments. The decision to use online
evaluations should be driven by the specific needs of the application and the real-
time requirements of the business. AI engineers can typically group their evaluation
needs into three categories: offline evaluation, guardrails, and online evaluation.

Offline evaluation: Offline evaluations are used for checking LLM
application results prior to releasing to production. Use offline evaluations for
CI/CD checks of your LLM application.

Example: Customer service chatbot where you want to make certain changes
to a prompt do not break previously correct responses.

Guardrail: AI engineers want to know immediately if something isn’t right and
block or revise the output. These evaluations run in real-time and block or
flag outputs when they detect that the system is veering off-course.

Example: An LLM application generates automated responses for a healthcare
system. Guardrails check for critical errors in medical advice, preventing
harmful or misleading outputs from reaching users in real time.

Online evaluation: AI engineers don’t want to block or revise the output, but
want to know immediately if something isn’t right. This approach is useful
when it’s important to track performance continuously but where it’s not
critical to stop the model’s output in real time.

Example: An LLM application generates personalized marketing emails. While
it’s important to monitor and ensure the tone and accuracy are correct, minor
deviations in phrasing don’t require blocking the message. Online evaluations
flag issues for review without stopping the email from being sent.

Choosing Between Online and
Offline Evaluation

LLM App Evaluation | Page 11 ↑ Table of contents | Next section ↓

Model Benchmarks vs Task Evals

LLM model evaluations look at overall macro performance of LLMs at an array of
tasks and LLM system evaluations — also referred to as LLM task evaluations —
are more system and use-case specific, evaluating components an AI engineer
building an LLM app can control (i.e. the prompt template or context).

Since the term “LLM evals” gets thrown around interchangeably, this distinction is
sometimes lost in practice. It’s critical to know the difference, however.

Why? Often, teams consult LLM leaderboards and libraries when such benchmarks
may not be helpful for their particular use case. Ultimately, AI engineers building
LLM apps that plug into several models or frameworks or tools need a way to
objectively evaluate everything at highly specific tasks – necessitating system
evals that reflect that fact.

LLM model evals are focused on the overall performance of the foundational
models. The companies launching the original customer-facing LLMs needed a
way to quantify their effectiveness across an array of different tasks.

LLM App Evaluation | Page 12 ↑ Table of contents | Next section ↓

In contrast, LLM system evaluation, also sometimes referred to as LLM task
evaluation, is the complete evaluation of components that you have control of
in your system. The most important of these components are the prompt (or
prompt template) and context. LLM system evals assess how well your inputs
can determine your outputs.

LLM system evaluation may, for example, hold the LLM constant and change
the prompt template. Since prompts are more dynamic parts of your system,
this evaluation makes a lot of sense throughout the lifetime of the project.
For example, an LLM can evaluate your chatbot responses for usefulness or
politeness, and the same eval can give you information about performance
changes over time in production.

There are a lot of common LLM evaluation metrics being employed today, such
as relevance, hallucinations, question-answering accuracy, toxicity, and retrieval-
specific metrics. However, most teams handcraft metrics based on their business
use cases. Each one of these LLM system evals will have different templates based
on what is being evaluated.

LLM App Evaluation | Page 13 ↑ Table of contents | Next section ↓

When evaluating LLM applications, the primary focus is on three key areas: the
task, historical performance, and golden datasets. Task-level evaluation ensures
that the application is performing well on specific use cases, while historical
traces provide insight into how the application has evolved over time. Meanwhile,
golden datasets act as benchmarks, offering a consistent way to measure
performance against well-established ground truth data.

What are you evaluating?

Pre-Production
Human Annotation and Curated Datasets

In the process of evaluating large language models (LLMs) or other AI systems,
building a high-quality, curated golden dataset is essential. A curated golden
dataset refers to a collection of examples that are carefully crafted and validated to
serve as the “ground truth” or benchmark for evaluating the model’s performance.
This dataset forms the backbone of many evaluation strategies, ensuring that the
results are reliable and consistent.

1. Creating a Hand-Crafted Dataset
The simplest form of a curated golden dataset starts with hand-
crafted examples. In this approach, subject matter experts or dataset
designers create examples manually to capture different aspects
of the task or domain being evaluated. These examples represent
various inputs that the model is expected to handle, along with their
correct or expected outputs.

LLM App Evaluation | Page 14 ↑ Table of contents | Next section ↓

For example, if evaluating a model for summarization, you could
manually create a series of text passages with corresponding
summaries that are ideal representations of what the model should
generate. The strength of this approach is that it allows for the creation
of nuanced and challenging examples tailored to specific use cases
or edge cases.

2. Annotating the Dataset with Ground Truth
Once the hand-crafted dataset is created, human annotators play a key
role in adding ground truth. Ground truth refers to the correct answers
or labels that serve as the standard for evaluation. In some cases,
annotators may need to modify or refine the original labels if additional
examples are included later.

For instance, annotators could be asked to label the output of a language
model as “correct” or “incorrect” based on whether it matches the
expected behavior. This ground truth will then serve as the reference
point when evaluating how well the model performs in comparison.

3. Multi-Annotator Validation: Ensuring Consensus and Accuracy
To ensure the quality and reliability of the ground truth data, it’s
crucial to validate the annotations across multiple annotators. In this
process, several annotators independently label or validate each
example. A common approach is to use the consensus of at least two
out of three annotators to confirm the correct label. If two out of three
annotators agree on the same label, that label becomes the confirmed
ground truth.

This multi-annotator strategy helps to reduce bias or errors that could
arise from individual perspectives and ensures that the dataset is
robust and reliable. Additionally, it is common to perform checks to
ensure that annotators have a high level of agreement (called inter-
annotator agreement), which further strengthens the trustworthiness of
the dataset.

LLM App Evaluation | Page 15 ↑ Table of contents | Next section ↓

Human annotation is a critical component in evaluating LLMs and other AI
systems. By combining hand-crafted datasets, ground truth labels, and multi-
annotator validation, organizations can create a golden dataset that is rich
in accuracy and diversity. This dataset allows for a more meaningful and
comprehensive evaluation of model performance, providing the context needed
to interpret automated metrics and improve model outputs.

Human Annotation in LLM Evaluation

Annotations and User Feedback

The rise of Reinforcement Learning from Human Feedback (RLHF) has highlighted
the importance of human feedback in training and refining LLM applications.
Whether you're manually labeling subtle response variations, curating datasets for
experimentation, or logging real-time user feedback, having a robust system for
capturing and cataloging annotations is critical to improving the performance and
accuracy of your LLM application.

Annotations are custom labels that can be added to LLM traces or spans,
allowing AI engineers to track performance and gather insights at a granular level.
Annotations help to:

Annotate Production Span Data: eams want to annotate data directly
on top of production responses allowing those annotations to be used for
filtering, analytics or production data analysis.

Categorize Spans or Traces: Assign categories to specific parts of a
conversation or output, enabling more detailed analysis of where a model
succeeds or fails.

Annotate Datasets for Experimentation: Use human-labeled data to
create high-quality datasets for testing and refining LLM applications, for
handcrafted CI/CD tests, few-shot prompting, or targeted evaluations.

LLM App Evaluation | Page 16 ↑ Table of contents | Next section ↓

Annotation Queues: The use of annotation queues has grown in use in
LLM Observability tools. The queues in Arize do not move data, but assign
labeling tasks to annotators on top of current data, either production data
or dataset data. When labels are needed on very specific types of data, that
data is added to queues, and annotators work through those specific queues.
The added labels will then appear on the original data.

Log Real-Time Feedback: Collect feedback from live applications through
APIs, allowing for dynamic, continuous improvements based on actual user
interactions.These are not always viewed as annotations but are worth a
mention in this section.

Annotations are particularly valuable for:

A well-implemented annotation and feedback system is essential for refining LLM
applications, ensuring that human expertise and real-world use cases are properly
incorporated into the evaluation process.

Evaluating Agreement/Disagreement: Identifying where human
evaluators and LLM evaluations align or diverge can reveal areas for
improving automated evaluations.

Gathering Direct Application Feedback: Integrate feedback mechanisms
directly into live applications, capturing user responses and experiences to
continuously improve LLM outputs.

Subject Matter Expertise: In complex domains (e.g., medical, legal, or
customer service applications), expert feedback is crucial to determining
the quality of the application. This input complements automated metrics
and provides deeper insight into how well the application performs in
specialized contexts.

LLM App Evaluation | Page 17 ↑ Table of contents | Next section ↓

Creating and Validating Synthetic Datasets as
Golden Datasets

Synthetic datasets are artificially created datasets that are designed
to mimic real-world information. Unlike naturally occurring data, which
is gathered from actual events or interactions, synthetic datasets
are generated using algorithms, rules, or other artificial means.
These datasets are carefully created to represent specific patterns,
distributions, or scenarios that developers and researchers want to
study or use for testing.

In the context of large language models, synthetic datasets
might include:

By using synthetic data, developers can create controlled environments
for experimentation, ensure coverage of edge cases, and protect privacy
by avoiding the use of real user data.

The applications of synthetic datasets are varied and valuable:

Generated text conversations simulating customer support interactions.

Artificial question-answer pairs covering a wide range of topics.

Fabricated product reviews with varying sentiments and styles.

Simulated code snippets with intentional bugs or specific patterns.

They allow us to test and validate model performance, especially
for assessing how well models perform specific tasks.

Synthetic data helps generate initial traces of application behavior,
facilitating debugging in tools like Arize.

Perhaps most importantly, synthetic datasets serve as “golden
data” for consistent experimental results. This is particularly useful
when developing and experimenting with applications that haven’t
yet launched.

LLM App Evaluation | Page 18 ↑ Table of contents | Next section ↓

COMBINING SYNTHETIC DATASETS WITH HUMAN EVALUATION
While synthetic datasets offer many advantages, they may sometimes miss key
use cases or types of inputs that humans would naturally consider. Human-in-the-
loop processes are valuable for dataset improvement.

Recent research has shown that including even a small number of human-
annotated examples can significantly improve the overall quality and effectiveness
of a synthetic dataset. This hybrid approach combines the scalability of synthetic
data with the understanding that human evaluators provide.

Human annotators can add targeted examples to synthetic datasets to address
gaps or underrepresented scenarios. This process of augmenting synthetic data
with human-curated examples can be easily implemented using tools like Arize.

The addition of these human-annotated examples can be particularly effective in
improving the dataset’s performance in few-shot learning scenarios, where models
need to generalize from a small number of examples.

LLM App Evaluation | Page 19 ↑ Table of contents | Next section ↓

Synthetic datasets are not static, one-time creations – they are dynamic
tools that require ongoing attention. To maintain their usefulness, developer
must do several things:

First, implement a regular refresh cycle. Revisit and update your datasets
periodically to keep pace with model improvements and account for data
drift in real-world applications.

Second, transparency is key in synthetic data generation. Maintain detailed
records of the entire process, including the prompts used, models employed,
and any post-processing steps applied.

Third, regular evaluation is important. Assess the performance of your
synthetic datasets against real-world data and newer models on an
ongoing basis.

Finally, when augmenting synthetic datasets with human-curated examples,
take a balanced approach. Add enough human input to enhance the
dataset’s quality and coverage, but be careful not to overwhelm the
synthetic component.

By adhering to these practices, you can maximize the long-term value and
reliability of your synthetic datasets, making them powerful tools for ongoing
model evaluation and experimentation.

Learn more here.

Best Practices for Synthetic
Dataset Use

https://arize.com/blog/creating-and-validating-synthetic-datasets-for-llm-evaluation-experimentation/

LLM App Evaluation | Page 20 ↑ Table of contents | Next section ↓

Benchmarking LLM Evaluation

Benchmarking LLM evaluation is critical to ensure your evaluation strategy
addresses these core areas:

BENCHMARKING LLM AS A JUDGE
Begin with a metric best suited for your use case. Then, you need the golden dataset.
This should be representative of the type of data
you expect the LLM eval to see. The golden
dataset should have the “ground truth” label so
that you can measure performance of the LLM
eval template.

Evaluation Accuracy: Does the evaluation process correctly capture the
quality of outputs generated by the application? This includes testing whether
your evaluation metrics (e.g., relevance, accuracy) accurately reflect real-world
outcomes like user satisfaction or task completion.

Consistency Across Scenarios: Benchmark the evaluation process for
consistency across a variety of application scenarios, including edge cases,
stress tests, and diverse input types. The goal is to ensure that evaluations
remain reliable and do not favor certain cases over others.

Evaluation Latency: How fast can evaluations be conducted in real-
time environments? Latency in generating evaluation results is critical for
applications where fast feedback loops are essential.

Human vs. Automated Evaluations: Compare automated evaluation
systems (such as those scoring relevance or accuracy) against human
evaluators (annotators) to ensure alignment. This benchmarking helps ensure
that automated processes reliably approximate human judgment.

LLM App Evaluation | Page 21 ↑ Table of contents | Next section ↓

Then you need to decide which LLM you want to use for evaluation. This could be
a different LLM from the one you are using for your application. For example, you
may be using Llama for your application and GPT-4 for your eval. Often this choice
is influenced by questions of cost and accuracy.

Now comes the core component that we are trying to benchmark and improve: the
eval template. If you’re using an existing library like OpenAI or Arize Phoenix, you
should start with an existing template and see how that prompt performs.

What is the input? In our example, it is the documents/context that was
retrieved and the query from the user.

What are we asking? In our example, we’re asking the LLM to tell us if the
document was relevant to the query.

What are the possible output formats? In our example, it is binary relevant/
irrelevant, but it can also be multi-class (e.g., fully relevant, partially relevant,
not relevant).

LLM App Evaluation | Page 22 ↑ Table of contents | Next section ↓

The more specific you are about how to classify
or grade a response, the more accurate your LLM
evaluation will become. Here is an example of a
custom template which classifies a response to a
question as positive or negative.

MY_CUSTOM_TEMPLATE = ‘’’
 You are evaluating the positivity or
negativity of the responses to questions.
 [BEGIN DATA]

 [Question]: {question}

 [Response]: {response}
 [END DATA]

 Please focus on the tone of the response.
 Your answer must be single word, either
“positive” or “negative”
 ‘’’

You now need to run the eval across your golden dataset. Then you can generate
metrics (overall accuracy, precision, recall, F1-score, etc.) to determine the
benchmark. It is important to look at more than just overall accuracy. We’ll discuss
that below in more detail.

LLM App Evaluation | Page 23 ↑ Table of contents | Next section ↓

If you are not satisfied with the performance of your LLM evaluation template, you
need to change the prompt to make it perform better. This is an iterative process
informed by hard metrics. As is always the case, it is important to avoid overfitting
the template to the golden dataset.

Finally, you arrive at your benchmark. The optimized performance on the golden
dataset represents how confident you can be on your LLM eval. It will not be as
accurate as your ground truth, but it will be accurate enough, and it will cost much
less than having a human labeler in the loop on every example.

relevant

Irrelevant

precision

0.70

0.89

recall

0.70

0.89

LLM App Evaluation | Page 24 ↑ Table of contents | Next section ↓

Evals with Explanations

Eval Hierarchy

It can be hard to understand in many cases why an LLM responds in a specific
way. Explanations showcase why the LLM decided on a specific score for your
evaluation criteria, and may even improve the accuracy of the evaluation.

Evaluations can occur at different levels of granularity. At the most basic level,
span-level evaluations assess the performance of specific components within an
application’s response. A trace-level evaluation looks at trends across multiple
full runs of your application, while session-level evaluation expands the scope to
multiple interactions. Understanding this hierarchy allows for a more structured and
comprehensive evaluation strategy.

LLM App Evaluation | Page 25 ↑ Table of contents | Next section ↓

Building a Robust Evaluation Approach

In order to ensure that LLMs are performing optimally and reliably,
a well-thought-out evaluation framework is essential. A robust
evaluation approach needs to account for several factors that
influence both the practical usability of the framework and its
ability to scale with evolving models. There are many existing
evaluation frameworks, including our evals library in Arize Phoenix,
and there is always the option to build your own system. Below are
the key aspects that to consider when choosing or building a solid
and comprehensive evaluation system.

ERGONOMICS: HOW EASY IS IT TO USE?
A user-friendly evaluation framework is crucial for broad
adoption and frequent usage. If the framework is too complex
or cumbersome, it discourages experimentation and regular
assessments. Good ergonomics ensure that setting up and
running evaluations is intuitive, even for non-technical users or
stakeholders. A good evaluation system should allow for quick
setup, intuitive workflows, and ease of collaboration between
different stakeholders.

PARALLELIZATION: CAN THE FRAMEWORK SUPPORT
PARALLEL EVALUATION CALLS?
The ability to run evaluations in parallel is a game-changer
when dealing with large-scale applications or high volumes of
requests. Parallelization speeds up the evaluation process, allowing
the framework to assess multiple models or multiple datasets
simultaneously, leading to more efficient workflows.

ONLINE/OFFLINE EVALUATION SUPPORT
An effective evaluation framework should be adaptable to both
online (real-time) and offline (batch-processed) environments.
While offline evaluations are crucial for testing in a controlled
environment, online evaluations offer insights into real-time
performance under dynamic, real-world conditions.

LLM App Evaluation | Page 26 ↑ Table of contents | Next section ↓

FLEXIBILITY: CUSTOM TEMPLATES FOR LLM AS A JUDGE
The evaluation framework should be flexible enough to accommodate a wide range
of use cases, tasks, and metrics. Customizable evaluation templates are key to this
flexibility, enabling teams to tailor the evaluation process to specific requirements,
including different task types or performance goals.

UI VS. NON-UI: DOES THE FRAMEWORK PROVIDE A UI OR IS IT PURE CODE?
Having both a UI and a non-UI (code-based) option in an evaluation framework
caters to a wider audience. A UI allows for easy setup and management of
evaluations, especially for non-technical users, while a code-based option offers
more customization and control for developers.

SCALE: HANDLING INCREASING COMPLEXITY AND CALLS
As the complexity of LLM applications grows, so does the need for a scalable
evaluation framework. Scalability encompasses the ability to handle increasing
calls, higher throughput, and more intricate evaluation criteria without sacrificing
performance.

INCLUDING EXPLANATIONS: PROVIDING INTERPRETABILITY
Including explanations in the evaluation results adds a layer of interpretability to the
evaluation process. Rather than simply providing a pass/fail result or a numerical
score, it is essential to explain why the application performed well or poorly on
specific tasks.

LLM App Evaluation | Page 27 ↑ Table of contents | Next section ↓

Choosing an Evaluation Model

Selecting the right evaluation model is crucial to ensuring that your
LLM evaluation approach is effective. The choice depends on how
often you are iterating on evaluations (often quite frequently), cost
versus accuracy requirements, and flexibility requirements.

Base Models: Many teams when starting on Evaluations
leverage the same models they are using for the LLM
application. If a team is using GPT-4o or Claude Sonet or
Gemini they will use the same model for Evaluations. This
gives a lot of flexibility and a place to baseline before moving
to a different approach that trades off accuracy vs cost.

Base SLM Models: The SLM model versions of base models
are a great choice for both Evals and guardrails. The GPT-4o
mini or Gemini/Gemma is 1/10 of the cost of base models
and incredibly fast for guardrail type applications. These are
a natural place to test against before moving to something
more complex and more rigid like a fine tuned model.

LLM Fine Tune: A fine tune of a 1B Llama or Phi model can
allow teams to apply a very specific eval, with a good set of
language generalization at a reduced cost. We recommend
moving to something like this as you have truly scaled out
your application and have a set of very focused evaluations
you are working to get reduced in total cost.

Fine-Tune Classifier (BERT Based): These models
are incredibly cheap but represent a large trade off in
generalization ability (BERT does not work across languages
or situations well) versus flexibility (if you want to change you
need to retrain) with low cost. If cost is your main objective
and you are laser focused on a single language and use
case, the BERT fine tune might make sense, though there
are so many better options we recommend against.

LLM App Evaluation | Page 28 ↑ Table of contents | Next section ↓

CI/CD
Experiments

An experiment allows you to systematically test and validate changes in your LLM
applications using a curated dataset. By defining a dataset (a collection of examples),
creating tasks to generate outputs, and setting up evaluators to assess those outputs,
you can run an experiment to see how well your updated pipeline performs. Whether
you’re testing improvements with a golden dataset or troubleshooting issues with
a problem dataset, experiments provide a structured way to measure the impact of
your changes and ensure your application is on the right track.

Components of experiments:

Datasets: Datasets are collections of examples that provide the inputs and,
optionally, expected reference outputs for evaluating your application. These
examples are used in experiments to track improvements to your prompt,
LLM, or other parts of your LLM application.

Tasks: A task is any function or process that produces a JSON-serializable
output. Typically, a task replicates the LLM functionality you’re aiming to
test. For instance, if you’ve made a prompt change, your task will run the
examples through the new prompt to generate an output. The task is used
in the experiment to process the dataset, producing outputs that will be
evaluated in the next steps.

Evaluators: An evaluator is any function that takes the output of a task
and provides an assessment. It serves as the measure of success for your
experiment, helping you determine whether your changes have achieved the
desired results. You can define multiple evaluators, ranging from LLM-based
judges to code-based evaluations. The evaluator is central to testing and
validating the outcomes of your experiment.

LLM App Evaluation | Page 29 ↑ Table of contents | Next section ↓

Tracking New Experiments

Effective experiment tracking is essential for measuring progress and avoiding
regressions. By maintaining a record of each experiment—along with its
configuration, dataset, evaluators, and results—AI engineers can compare past and
present performance. This ensures that each change is assessed in context, and
improvements or declines are easily traceable across different experiments.

Application/Orchestration Changes

Experiments extend beyond simple prompt or model changes—they also allow AI
engineers to test changes in how the LLM application is orchestrated. This could
include testing new integrations, API interactions, or external function calls. By
experimenting with application or orchestration changes, engineers can optimize
the performance of the overall system, not just the LLM output itself.

For example, an application might include task orchestration changes, such as
altering how functions are triggered or modifying interaction flows between the LLM
and external APIs. Experiments help determine whether these changes improve
response times, reduce errors, or enhance overall user experience.

LLM App Evaluation | Page 30 ↑ Table of contents | Next section ↓

Interpreting experiment results requires nuance. Experiments often yield mixed
outcomes—some evaluations may show improvements while others may not. For
example, a change in prompt structure might lead to higher coherence scores but
could slightly reduce factual accuracy.

Most teams hand curate annotated examples for an experiment validation set
and then use metrics such as an average score, F1, recall or precision on top of
evaluation results to assess performance. The use of statistical metrics is not
ubiquitous, as many AI engineers come from different non-stats backgrounds,
though we do see the use of statistical checks as a growing set of best practices.

Understanding that evaluation results are not always “black and white” is key.
It’s important to weigh trade-offs and prioritize improvements that align with the
specific goals of your application. A robust evaluation process will consider the
impact across multiple metrics and tasks, allowing the AI engineer to decide
whether the trade-offs make sense for their application.

How to Read Results: It’s Not Black
and White

LLM App Evaluation | Page 31 ↑ Table of contents | Next section ↓

from phoenix.evals import (
 HALLUCINATION_PROMPT_RAILS_MAP,
 HALLUCINATION_PROMPT_TEMPLATE,
 llm_classify,
)
from phoenix.experiments.types import EvaluationResult
from openai import OpenAIModel

class HallucinationEvaluator(Evaluator):
 def evaluate(self, output, dataset_row, **kwargs) -> EvaluationResult:
 print(“Evaluating outputs”)
 expected_output = dataset_row[“attributes.llm.output_messages”]

 # Create a DataFrame with the actual and expected outputs
 df_in = pd.DataFrame(
 {“selected_output”: output, “expected_output”: expected_output}, index=[0]
)
 # Run the LLM classification
 expect_df = llm_classify(
 dataframe=df_in,
 template=HALLUCINATION_PROMPT_TEMPLATE,
 model=OpenAIModel(model=”gpt-4o-mini”, api_key=OPENAI_API_KEY),
 rails=HALLUCINATION_PROMPT_RAILS_MAP,
 provide_explanation=True,
)
 label = expect_df[“label”][0]
 score = 1 if label == rails[1] else 0 # Score 1 if output is incorrect
 explanation = expect_df[“explanation”][0]

 # Return the evaluation result
 return EvaluationResult(score=score, label=label, explanation=explanation)

In this example, the HallucinationEvaluator class evaluates whether the output
of an experiment contains hallucinations by comparing it to the expected output
using an LLM. The llm_classify function runs the eval, and the evaluator returns an
EvaluationResult that includes a score, label, and explanation.

You can customize LLM evaluators to suit your experiment’s needs, whether
you’re checking for hallucinations, function choice, or other criteria where an LLM’s
judgment is valuable. Simply update the template with your instructions and the
rails with the desired output. You can also have multiple LLM evaluators in a single
experiment to assess different aspects of the output simultaneously.

LLM Evaluators
LLM evaluators utilize LLMs as judges to assess the success of your experiment.
These evaluators can either use a prebuilt LLM evaluation template or be customized
to suit your specific needs.

Here’s an example of a LLM evaluator that checks for hallucinations in the model output:

LLM App Evaluation | Page 32 ↑ Table of contents | Next section ↓

Code Based Eval Experiment

Code evaluators are functions designed to assess the outputs of your experiments.
They allow you to define specific criteria for success, which can be as simple or
complex as your application requires. Code evaluators are especially useful when
you need to apply tailored logic or rules to validate the output of your model.

Creating a custom code evaluator is as simple as writing a Python function.
By default, this function will take the output of an experiment run as its single
argument. Your custom evaluator can return either a boolean or a numeric value,
which will then be recorded as the evaluation score.

For example, let’s say our experiment
is testing a task that should output
a numeric value between 1 and 100.
We can create a simple evaluator
function to check if the output falls
within this range.

By passing the in_bounds function
to run_experiment, evaluations will
automatically be generated for each
experiment run, indicating whether
the output is within the allowed range.
This allows you to quickly assess the
validity of your experiment’s outputs
based on custom criteria.

def in_bounds(output):
 return 1 <= output <= 100

experiment = arize_client.run_
experiment(
 space_id=SPACE_ID,
 dataset_id=DATASET_ID,
 task=run_task,
 evaluators=[in_bounds],
 experiment_name=experiment_name,
)

LLM App Evaluation | Page 33 ↑ Table of contents | Next section ↓

Synchronous: The synchronous running of an experiment runs one after another.

Async: The asynchronous running of an experiment runs parallel.

Run linear, one after another

Run in parallel at the same time

Async Vs Sync Tasks and Evals

Keep these in mind when choosing between synchronous and asynchronous
experiments.

Synchronous: Slower but easier to debug. When you are building your tests
these are inherently easier to debug. Start with synchronous and then make
them asynchronous.

Asynchronous: Faster. When timing and speed of the tests matter. Make the
tasks and/or evals asynchronous and you can 10x the speed of your runs.

Task Eval

Task Eval

Task Eval

Task Eval

Task Eval

Task Eval

LLM App Evaluation | Page 34 ↑ Table of contents | Next section ↓

Setting up CI/CD pipelines for LLMs helps you maintain control as your applications
evolve. Just like in traditional software, automated testing is crucial to catch issues
early. With Arize, you can create experiments that automatically validate changes—
whether it's a tweak to a prompt, model, or function—using a curated dataset and
your preferred evaluation method. These tests can be integrated with
GitHub Actions, so they run automatically when you push a change, giving you
confidence that your updates are solid without the need for manual testing.

GitHub Actions allow you to automate workflows directly from your GitHub
repository. It enables you to build, test, and deploy your code based on specific
events (such as code pushes, pull requests, and more).

KEY CONCEPTS OF GITHUB ACTIONS:

• Workflows: Automated processes that you define in your repository.
• Jobs: A workflow is composed of one or more jobs that can run sequentially or

in parallel.
• Steps: Jobs contain steps that run commands in the job's virtual environment.
• Actions: The individual tasks that you can combine to create jobs and

customize your workflow. You can use actions defined in the GitHub
marketplace or create your own.

CI/CD for Automated Experimentation

https://docs.arize.com/arize/llm-experiments-and-testing/how-to-experiments/ci-cd-for-automated-experiments/github-action-basics

LLM App Evaluation | Page 35 ↑ Table of contents | Next section ↓

Datasets

Datasets are integral to evaluation and experimentation.

They are collections of examples that provide the inputs, outputs,and any other
attributes needed for assessing your application. Each example within a dataset
represents a single data point, consisting of an inputs dictionary, an optional output
dictionary, and an optional metadata dictionary. The optional output dictionary
often contains the expected LLM application output for the given input.

Datasets allow you to collect data from production, staging, evaluations, and
even manually. The examples collected are then used to run experiments and
evaluations to track improvements.

Use datasets to:
• Store evaluation test cases for your eval script instead of managing large

JSONL or CSV files
• Capture generations to assess quality manually or using LLM-graded evals
• Store user reviewed generations to find new test cases

CREATING DATASETS
There are various ways to get started with datasets:

Manually Curated Examples
This is how we recommend you start. From building your application, you probably
have an idea of what types of inputs you expect your application to be able to
handle, and what "good" responses look like. You probably want to cover a few
different common edge cases or situations you can imagine. Even 20 high quality,
manually curated examples can go a long way.

Historical Logs
Once you ship an application, you start gleaning valuable information: how users are
actually using it. This information can be valuable to capture and store in datasets.
This allows you to test against specific use cases as you iterate on your application.

If your application is going well, you will likely get a lot of usage. How can you
determine which datapoints are valuable to add? There are a few heuristics you

LLM App Evaluation | Page 36 ↑ Table of contents | Next section ↓

Promoting Changes

Promoting changes in LLM applications requires rigorous
evaluation-driven testing to ensure new updates are stable,
accurate, and aligned with the application’s goals. Given the
non-deterministic nature of LLMs, promoting changes based
on evaluation metrics needs to be done thoughtfully, balancing
between ensuring reliability and avoiding unnecessary roadblocks.

Writing Eval-Driven Development Tests
To promote changes effectively, it's crucial to integrate GitHub
Actions and evaluation-driven tests into your development
workflow. Since LLMs are non-deterministic, running a test once
isn’t enough. The key is passing evaluation tests consistently. AI
engineers need to run evaluations multiple times to ensure that
results are consistent across runs. Changes should pass a certain
number of test runs to guarantee stability and avoid promoting
changes based on one-off good results.

can follow. If possible, try to collect end user feedback. You can
then see which datapoints got negative feedback. That is super
valuable! These are spots where your application did not perform
well. You should add these to your dataset to test against in the
future. You can also use other heuristics to identify interesting
datapoints - for example, runs that took a long time to complete
could be interesting to analyze and add to a dataset.

Synthetic Data
Once you have a few examples, you can try to artificially generate
examples to get a lot of datapoints quickly. It's generally advised
to have a few good handcrafted examples before this step, as the
synthetic data will often resemble the source examples in some way.

LLM App Evaluation | Page 37 ↑ Table of contents | Next section ↓

What Experiments Should You Run in CI/CD?
When running experiments in your CI/CD pipeline, the goal is to simulate
production as closely as possible before deploying changes. Some experiments
to include:

Ground Truth Evals: These should be run regardless of what’s being
tested. If the application fails on ground truth comparisons, something is
fundamentally broken, and changes should not be promoted.

Threshold-Based Experiments: Set up experiments to detect if certain
evaluation metrics (e.g., hallucinations or correctness) pass a defined
threshold. For instance, if hallucination rates spike by 50% compared to a
baseline, it may indicate a significant issue that needs addressing before
promoting the change.

Should You Block PRs on Failures?
Blocking PRs on evaluation failures should be handled similarly to traditional unit
tests. Some evaluation failures, like major issues in ground truth comparisons
or significant metric spikes, should block PRs. However, not all evaluation tests
should block a PR—some are better suited for post-deployment monitoring to
avoid unnecessary bottlenecks.

This is where the paradigm shift comes in: LLM evaluations are your new unit
tests. While teams may not block changes for every failure, they represent real
tests that detect critical issues in your application, ensuring that only high-quality
updates are promoted.

Paradigm Shift: Detaching Experiments from CI/CD

In traditional software development, Continuous Integration and Continuous
Deployment (CI/CD) pipelines are designed to catch issues early, ensuring that
code changes don’t introduce new bugs or degrade performance. However, with
LLM applications, this approach requires a significant shift. Unlike traditional
applications, LLM applications are not only affected by code changes but also by
model updates, or input drift in production. As a result, experiments need to be run
regularly in order to detect performance shifts, even when there aren’t associated
pull requests or active development changes.

LLM App Evaluation | Page 38 ↑ Table of contents | Next section ↓↑ Table of contents | Next section ↓

Production

As LLM applications become more common, so
too do jailbreak attempts, exploitations of these
apps, and harmful responses. More and more
companies are falling prey to damaging news
stories driven by their chatbots selling cars for $1,
writing poems critical of their owners, or dealing out
disturbing replies.

Fortunately, there is a solution to this problem: LLM
guardrails. LLM guardrails allow you to protect your
application from potentially harmful inputs, and
block damaging outputs before they’re seen by
a user. As LLM jailbreak attempts become more
common and more sophisticated, having a robust
guardrails approach is critical.

LLM guardrails work in real-time to either catch
dangerous user inputs or screen model outputs.
There are many different types of guards that
can be employed, each specializing in a different
potential type of harmful input or output.

Guardrails

https://news.ycombinator.com/item?id=38681450
https://www.theregister.com/2024/01/23/dpd_chatbot_goes_rogue/
https://www.forbes.com/sites/antoniopequenoiv/2024/02/28/microsoft-investigates-harmful-chatbot-responses-the-latest-chatbot-blunder-from-top-ai-companies/
https://www.forbes.com/sites/antoniopequenoiv/2024/02/28/microsoft-investigates-harmful-chatbot-responses-the-latest-chatbot-blunder-from-top-ai-companies/

LLM App Evaluation | Page 39 ↑ Table of contents | Next section ↓

Balancing Act of Guards
Implementing guardrails for AI systems is a delicate balancing act. While these
safety measures are important for responsible AI deployment, finding the right
configuration is necessary to maintain both functionality and security.

It’s important to resist the temptation to over-index on guards. It may seem
prudent to implement every conceivable safety measure, but this approach can
be counterproductive. Excessive guardrails risk losing the intent of the user’s initial
request or the value of the app’s output. Instead, we advise starting with the most
critical guards and expanding judiciously as needed. Tools like Arize’s AI search can
be helpful in identifying clusters of problematic inputs to allow for targeted guard
additions over time.

Common input guard use cases include:
• Detecting and blocking jailbreak attempts
• Preventing prompt injection attempts
• Removing user personally identifiable information (PII) before it reaches a model

Common output guard use cases include:
• Removing toxic or hallucinated responses
• Removing mentions of a competitor’s product
• Screening for relevancy in responses
• Removing NSFW text

LLM App Evaluation | Page 40 ↑ Table of contents | Next section ↓

Types of Guards

AI guardrails span input validation and sanitization — like syntax and format checks,
content filtering, jailbreak attempt detection — and output monitoring and filtering,
which can prevent damage, ensure performance, or evolve over time through
dynamic guards. Let’s explore the main categories of guards and their applications.

Input Validation and Sanitization
Input validation and sanitization serve as the first line of defense in AI safety. These
guards ensure that the data fed into your model is appropriate, safe, and
in the correct format.

Syntax and Format Checks
While basic, these checks are important for maintaining system integrity. They
verify that the input adheres to the expected format and structure. For instance,
if your model expects certain parameters, what happens when they’re missing?
Consider a scenario where your RAG retriever fails to return documents, or your
structured extractor pulls the wrong data. Is your model prepared to handle this
malformed request? Implementing these checks helps prevent errors and ensures
smooth operation.

Content Filtering
This guard type focuses on removing sensitive or inappropriate content before
it reaches the model. Detecting and removing personally identifiable information
can help avoid potential privacy issues, and filtering NSFW or toxic language can
ensure more appropriate responses from your LLM. We recommend implementing
this guard cautiously – overzealous filtering might inadvertently alter the user’s
original intent. Often, these types of guards are better suited filtering the outputs of
your application rather than the inputs.

Jailbreak Attempt Detection
These are the guards that prevent massive security breaches and keep your
company out of news headlines. Many collections of jailbreak prompts are available,
and even advanced models can fail on up to 40% of these publicly-documented
attacks. As these attacks constantly evolve, implementing effective guards can
be challenging; we recommend using an embedding-based guard like Arize’s,
which can adapt to changing strategies. At minimum, use a guard connected to a
common library of prompt injection prompts, such as Rebuff.

LLM App Evaluation | Page 41 ↑ Table of contents | Next section ↓

Ensuring Performance
When it comes to performance, developers face a choice between using guards
to improve your app’s output in real-time or running offline evaluations to optimize
your pipeline or prompt template. Real-time guards introduce more latency and
cost but offer immediate improvements. Offline evaluations allow for pipeline
optimization without added latency, though there may be a delay between issue
discovery and resolution. We recommend starting with offline evaluations and only
adding performance guards if absolutely necessary.

Hallucination Prevention: Guards can prevent hallucinations by comparing
outputs with reference texts or, when unavailable, cross-referencing with
reliable sources like Wikipedia.

Critic Guards: This broad category involves using a separate LLM to critique
and improve your pipeline’s output before sending it to the user. These can
be instructed to focus on relevancy, conciseness, tone, and other aspects of
the response.

System Prompt Protection: Some attacks try to expose the prompt
templates your system uses. Adding a guard to detect system prompt
language in your outputs can mitigate this risk. Just be sure to avoid
exposing this same template within your guard’s code!

NSFW or Harmful Language Detection: Allowing this type of language in
your app’s responses can be extremely harmful to user experience and your
brand. Use guards to help identify this language.

Competitor Mentions: Depending on your use case, mentioning competitors
might be undesirable. Guards can be set up to filter out such references.

Output Monitoring and Filtering
Output guards generally fall into two categories: preventing damage, and
ensuring performance.

Preventing Damage
Examples of this include:

LLM App Evaluation | Page 42 ↑ Table of contents | Next section ↓

Manually updating guards to counter new threats is a near impossible task, quickly
becoming unsustainable as attack vectors multiply. Fortunately, two approaches
allow us to create adaptive guards that can keep pace with emerging threats: few-
shot prompting and embedding-based guards.

While static guards are great at filtering out predefined content like NSFW
language, they struggle when faced with sophisticated attacks like jailbreak
attempts, prompt injection, and more. These dynamic threats require equally
dynamic defenses that can evolve alongside the attackers’ strategies.

Few-Shot Prompting
This technique involves adding examples of recent jailbreak attempts or other
attacks directly into your guard’s prompt. By exposing the guard to real-world
attack patterns, you improve its ability to recognize and thwart similar threats in the
future.

This is a more sophisticated approach to dynamic protection. It involves comparing
the embedding of a user’s input against a database of known attack embeddings.
By checking the similarity between these representations, the system can identify
and block potentially malicious inputs that exceed a predefined similarity threshold.
Arize has developed an easy-to-use but powerful implementation of this concept
with our ArizeDatasetEmbeddings Guard.

While dynamic guards offer powerful protection, they come with a few
considerations:
• Increased computational cost due to larger models or embedding generation.
• Higher latency, potentially impacting response times.
• The need for ongoing maintenance and updates to the attack prompt database.

Dynamic Guards

LLM App Evaluation | Page 43 ↑ Table of contents | Next section ↓

Dataset Embeddings
Guard

Few Shot LLM
Guard

General LLM
Guard

Ad
va

nt
ag

es

Customizable: Customize
this Guard to your specific
use case by providing few
shot examples from real
customer chats

Easy to update: Tackle
drift by updating the
Guard with new few shot
examples as the models
and failure modes evolve
over time

Low latency / cost: Does
not rely on a large model
to evaluate the input
message

Customizable: Same as
Dataset Embeddings

Easy to update: Same as
Dataset Embeddings

Fewer false positives:
Less likely to produce
false positives, e.g. can
differentiate between
jailbreak attempts and
role-play

Customizable: Instantiate
with a custom prompt for
a specific use case

Opportunity to optimize
performance: Try our
prompt playground to
optimize performance
via prompt engineering
against a golden dataset

Di
sa

dv
an

ta
ge

s

Performance depends on
the quality of the source
dataset

LLM evaluator call
introduces cost and
latency

Performance depends on
the quality of the source
dataset

LLM evaluator call
introduces cost and
latency

Performance depends on
the quality of the prompt

LLM evaluator call
introduces cost and
latency

Prompt may need to be
continually re-engineered
as models and use cases
evolve

It’s important to weigh these factors against the level of protection required for your
specific use case.

Dynamic Guards continued

LLM App Evaluation | Page 44 ↑ Table of contents | Next section ↓

Continuous Improvement
Self-Improving Evaluations

In the world of LLM evaluation, self-improving evaluations represent an approach
where models not only undergo testing but also learn from their mistakes and
continuously improve their own evaluation methods. The idea behind this is to create
an adaptive evaluation system that refines itself over time, leading to more accurate
assessments of LLM performance.

1. CONTINUOUS LEARNING FROM ERRORS
Self-improving evals work by systematically identifying areas where the model performs
poorly and using that feedback to adjust future evaluations. For example, if a model
frequently makes errors in answering complex questions, the evaluation framework can
highlight those areas and provide focused feedback to guide future adjustments.

This approach allows the evaluation framework to learn and evolve, enabling:

Identification of weak points: Pinpointing tasks or datasets where the
model struggles the most.

Dynamic refinement: The evaluation framework adjusts its criteria or
datasets, incorporating harder examples or edge cases.

Self-correction: Over time, the system improves by updating its metrics
or test cases based on the model's performance, continuously raising the
standard for evaluation.

2. FEEDBACK LOOPS
A crucial aspect of self-improving evals is the use of feedback loops. These loops
allow models to learn from the evaluations themselves. Feedback on where the model
underperforms can guide fine-tuning or retraining efforts, leading to more effective
performance improvements.

By embedding feedback loops into the evaluation process, you can ensure that models
become more robust over time. This is particularly important for models that will encounter
changing environments or evolving datasets, as they will need to adapt in real time.

LLM App Evaluation | Page 45 ↑ Table of contents | Next section ↓

Improving LLM Evaluation Systems

Improving LLM evaluation systems is usually done by
either iterating on the prompt template used, adding
few-shot examples, or by fine-tuning the underlying
eval model.

FEW-SHOT PROMPTING EVALUATIONS
Few-shot prompting refers to the practice of providing
an LLM with a small number of examples (or shots)
to help it understand the task at hand. In few-shot
prompting evaluations, the goal is to see how well
the model can generalize and perform based on very
limited input data.

1. Setting Up Few-Shot Prompting Evals
In this evaluation method, the model is given a few
labeled examples as part of the prompt to guide its
response. For example, in evaluating a summarization
model, you might provide two or three examples of
text along with their summaries before asking the
model to generate a summary for a new text. The
evaluation then measures how well the model learns
from these few examples to generate accurate
outputs for unseen data.

Few-shot prompting evaluations simulate real-
world use cases where large training datasets are
unavailable. This is crucial for:

• Rapid prototyping: Evaluating how a model
handles new tasks with minimal input.

• Generalization: Testing the model's ability to
generalize from very little data.

LLM App Evaluation | Page 46 ↑ Table of contents | Next section ↓

2. Curating a Dataset for Few-Shot Evaluations
Curating a dataset for few-shot evaluation is about finding the right balance
between variety and representativeness. Unlike larger datasets, where quantity
might mask inconsistencies, few-shot datasets must be carefully selected to
represent the full scope of the task. You can do so by either manually curating
them or hand writing examples, or use an LLM to synthetically generate them.

Steps for curating an effective few-shot dataset:

By carefully curating a few-shot dataset, you allow the model to demonstrate
its ability to quickly learn and adapt to new information, which is a critical
component in measuring its overall robustness.

You are a data analyst. You are using LLMs to summarize a document.
Create a CSV of 20 test cases with the following columns:

1. Input: The full document text, usually five paragraphs of articles
about beauty products.

2. Prompt Variables: A JSON string of metadata attached to the
article, such as the article title, date, and website URL

3. Output: The one line summary

Diverse examples: Include a range of inputs that cover different types of
challenges the model may face. This ensures that the few examples are
representative of broader tasks.

Consistency in ground truth: Ensure that the correct answers (ground
truth) provided for each example are consistent and well-defined, as the
model will be evaluated on how well it follows these examples.

Edge cases: Incorporate examples that test the model’s limits, including
rare or tricky scenarios that might confuse it.

LLM App Evaluation | Page 47 ↑ Table of contents | Next section ↓

3. Updating Prompts with Examples
How do you determine which examples to add to your prompt? You can select
your examples based on the cosine similarity between each of the given
prompt variables. You can add examples of queries that are very similar to the
user query to increase your precision.

You can also use an LLM to summarize the examples and insert them as
additional instructions. As you add additional examples, you can start catching
more and more edge cases, add them to your prompt, and re-test them
against your golden dataset to ensure reliability.

In this task, you will be presented with a query, a reference text
and an answer. The answer is generated to the question based on the
reference text. The answer may contain false information. You must
use the reference text to determine if the answer to the question
contains false information, if the answer is a hallucination of facts.
A 'hallucination' refers to
an answer that is not based on the reference text or assumes
information that is not available in
the reference text. Your response should be a single word: either
"factual" or "hallucinated", and
it should not include any other text or characters. "hallucinated"
indicates that the answer
provides factually inaccurate information to the query based on the
reference text. "factual"
indicates that the answer to the question is correct relative to the
reference text, and does not contain made up information.

Use the examples below for reference:
{examples}

Here is the query, reference, and answer.
 # Query: {query}
 # Reference text: {reference}
 # Answer: {response}

Is the answer above factual or hallucinated based on the query and
reference text?

LLM App Evaluation | Page 48 ↑ Table of contents | Next section ↓

4. Fine tuning the evaluation model
The last step is fine-tuning the evaluator. Fine tuning the evaluator model is similar
to fine tuning the LLM used for the application, and can be done using the data
points collected earlier.

This also allows teams to use smaller language models, which reduces latency and
cost while maintaining similar levels of performance. As the dataset of corrections
increase, AI engineers can connect their evaluator to the CI/CD pipeline and
continuously run fine tuning jobs to increase the precision of their evaluator.

Use Cases
Evaluating Agents

BUILDING EVALUATORS FOR EACH STEP
Evaluating the skill steps of an agent is similar to evaluating those skills outside of
the agent. If your agent has a RAG skill, for example, you would still evaluate both
the retrieval and response generation steps, calculating metrics like document
relevance and hallucinations in the response.

LLM App Evaluation | Page 49 ↑ Table of contents | Next section ↓

UNIQUE CONSIDERATIONS WHEN
EVALUATING AGENTS
Beyond skills, agent evaluation becomes more unique.

In addition to evaluating the agent’s skills, you need to
evaluate the router and the path the agent takes.

The router should be evaluated on two axes: first, its
ability to choose the right skill or function for a given
input; second, its ability to extract the right parameters
from the input to populate the function call.

Choosing the right skill is perhaps the most important
task and one of the most difficult. This is where your
router prompt (if you have one) will be put to the test.
Low scores at this stage usually stem from a poor
router prompt or unclear function descriptions, both of
which are challenging to improve.

Extracting the right parameters is also tricky,
especially when parameters overlap. Consider adding
some curveballs into your test cases, like a user
asking for an order status while providing a shipping
tracking number, to stress-test your agent.

Arize provides built-in evaluators to measure tool call
accuracy using an LLM as a judge, which can assist at
this stage.

LLM App Evaluation | Page 50 ↑ Table of contents | Next section ↓

TOOL_CALLING_PROMPT_TEMPLATE = """
You are an evaluation assistant evaluating questions and tool calls to
determine whether the tool called would answer the question. The tool
calls have been generated by a separate agent, and chosen from the
list of tools provided below. It is your job to decide whether that
agent chose the right tool to call.

 [BEGIN DATA]

 [Question]: {question}

 [Tool Called]: {tool_call}
 [END DATA]

Your response must be single word, either "correct" or "incorrect",
and should not contain any text or characters aside from that word.
"incorrect" means that the chosen tool would not answer the question,
the tool includes information that is not presented in the question,
or that the tool signature includes parameter values that don't match
the formats specified in the tool signatures below.

"correct" means the correct tool call was chosen, the correct
parameters were extracted from the question, the tool call generated
is runnable and correct, and that no outside information not present
in the question was used in the generated question.

 [Tool Definitions]: {tool_definitions}
"""

Lastly, evaluate the path the agent takes during execution. Does it repeat steps?
Get stuck in loops? Return to the router unnecessarily? These “path errors” can
cause the worst bugs in agents.

To evaluate the path, we recommend adding an iteration counter as an evaluation.
Tracking the number of steps it takes for the agent to complete different types of
queries can provide a useful statistic.

However, the best way to debug agent paths is by manually inspecting traces.
Especially early in development, using an observability platform and manually
reviewing agent executions will provide valuable insights for improvement.

LLM App Evaluation | Page 51 ↑ Table of contents | Next section ↓

Retrieval Augmented Generation (RAG) Evaluation

RAG applications need to be evaluated on two critical aspects.

• Retrieval Evaluation: To assess the accuracy and relevance of the
documents that were retrieved. Examples:

You are comparing a reference text to a question and trying to
determine if the reference text contains information relevant to
answering the question. Here is the data:

 [BEGIN DATA]

 [Question]: {query}

 [Reference text]: {reference}
 [END DATA]

Compare the Question above to the Reference text. You must determine
whether the Reference text contains information that can answer the
Question. Please focus on whether the very specific question can be
answered by the information in the Reference text.

Your response must be single word, either "relevant" or "unrelated",
and should not contain any text or characters aside from that word.

"unrelated" means that the reference text does not contain an answer to
the Question.

"relevant" means the reference text contains an answer to the Question.

Groundedness
or Faithfulness

The extent or faithfulness to which the
LLM's response aligns with the retrieved
context.

Binary classification (fiathful/unfaithful)

Context
relevance

Guages how relevant the retirieved
context supports the user's query.

Binary classification (fiathful/unfaithful).
Ranking metrics: Mean Reciprocal Rank
(MRR), Precision @ K, Mean Average
Precision (MAP), Hit rate, Normalized
Dicounted Cumulative Gain (NDCG)

LLM App Evaluation | Page 52 ↑ Table of contents | Next section ↓

• Response Evaluation: To measure the appropriateness of the response
generated by the system when the context was provided. Examples:

You are given a question, an answer and reference text. You must
determine whether the given answer correctly answers the question
based on the reference text. Here is the data:

 [BEGIN DATA]

 [Question]: {question}

 [Reference]: {context}

 [Answer]: {sampled_answer}
 [END DATA]

Your response must be a single word, either "correct" or
"incorrect", and should not contain any text or characters aside
from that word.

"correct" means that the question is correctly and fully answered
by the answer.

"incorrect" means that the question is not correctly or only
partially answered by the answer.

Ground Truth-
Based
Metrics

The extent or faithfulness to which
the LLM's response aligns with the
retrieved context.

Accuracy, Precision, Recall, F1 score

Answer Relevance Guages how relevant the retirieved
context supports the user's query. Binary classification (Relevant/Irrelevant

QA Correctness
Detectsw hether a question was
correctlly answered by the system
based on the retrieved data.

Binary classification (Correct/Incorrect)

Hallucinations To detect LLM hallucinations relative to
retrieved context.

Binary classification (Factual/
Hallucinated)

LLM App Evaluation | Page 53 ↑ Table of contents | Next section ↓

To start your AI Observability and Evaluation journey,
sign up for a free trial or schedule a demo.

To receive more educational content, Sign up for our bi-monthly
newsletter “The Evaluator”

Getting Started

Given the rapid evolution of generative AI and the LLMOps space, best
practices will likely evolve over time.

Here are a few resources to ask questions and keep up with the latest:

Arize AI
Community

→

Product
Documentation

→→

LLM-Focused
Industry

Certifications

http://arize.com/join
https://arize.com/request-a-demo/
https://arize.com/blog/#blog-subscribe-modal
https://arize.com/
https://www.linkedin.com/company/arizeai/
https://x.com/arizeai
https://arize-ai.slack.com/archives/C016XGKCG0P
https://docs.arize.com/arize
https://courses.arize.com/courses/

	Table of Contents
	Introduction
	LLM Eval Types
	LLM Eval Types
	LLM as a Judge Eval
	Code-based Eval
	Eval Output Type
	Online vs Offline Evaluation
	Choosing Between Online and Offline Evaluation
	Model Benchmarks vs Task Evals
	What are you evaluating?

	Pre-Production
	Pre-Production
	Human Annotation and Curated Datasets
	Human Annotation in LLM Evaluation
	Best Practices for Synthetic Dataset Use
	Benchmarking LLM Evaluation
	Evals with Explanations
	Eval Hierarchy
	Building a Robust Evaluation Approach
	Choosing an Evaluation Model: Seq2Seq vs Token Classifiers and More

	CI/CD
	Experiments
	Application/Orchestration Changes
	Async Vs Sync Tasks and Evals
	CI/CD for Automated Experimentation
	Datasets
	Promoting Changes

	Production
	Guardrails
	Types of Guards
	Dynamic Guards
	Annotations and User Feedback

	Continuous Improvement
	Self-Improving Evaluations
	Improving LLM Evaluation Systems

	Use Cases
	Evaluating Agents
	Retrieval Augmented Generation (RAG) Evaluation

