The OpenInference Java SDK provides tracing capabilities for AI applications using OpenTelemetry. It enables you to instrument and monitor different code executions across models, frameworks, and vendors. The SDK uses semantic conventions - standardized attribute names and values - to ensure consistent tracing across different LLM providers and frameworks.
OpenInference Java is part of the OpenInference project. The Java SDK consists of three main packages:
openinference-semantic-conventions: Java constants for OpenInference semantic conventions
openinference-instrumentation-langchain4j: Auto-instrumentation for LangChain4j applications
This package provides Java constants for OpenInference semantic conventions. Semantic conventions are standardized attribute names and values that ensure consistent tracing across different LLM providers, models, and frameworks. They define a common vocabulary for describing LLM operations, making it easier to analyze and compare traces from different sources.
OpenInference semantic conventions include standardized attributes for:
Span Kinds: LLM, Chain, Tool, Agent, Retriever, Embedding, Reranker, Guardrail, Evaluator
Attributes: Model names, token counts, prompts, completions, embeddings, etc.
This package provides base instrumentation utilities for creating customized manual traces
import io.opentelemetry.api.GlobalOpenTelemetry;
import io.openinference.instrumentation.OITracer;
// Create an OITracer
Tracer otelTracer = GlobalOpenTelemetry.getTracer("my-app");
OITracer tracer = new OITracer(otelTracer);
// Create an LLM span
Span span = tracer.llmSpanBuilder("chat", "gpt-4")
.setAttribute(SpanAttributes.LLM_MODEL_NAME, "gpt-4")
.setAttribute(SpanAttributes.LLM_PROVIDER, "openai")
.startSpan();
This package provides auto-instrumentation for LangChain4j applications, automatically capturing traces from LangChain4j components:
import io.openinference.instrumentation.langchain4j.LangChain4jInstrumenter;
LangChain4jInstrumentor.instrument();
Java 11 or higher
OpenTelemetry Java 1.49.0 or higher
Arize account with Space ID and API Key
Add the dependencies to your build.gradle
:
dependencies {
// Core semantic conventions
implementation 'io.openinference:openinference-semantic-conventions:1.0.0'
// Base instrumentation utilities
implementation 'io.openinference:openinference-instrumentation:1.0.0'
// LangChain4j auto-instrumentation (optional)
implementation 'io.openinference:openinference-instrumentation-langchain4j:1.0.0'
}
Add the dependencies to your pom.xml
:
<dependencies>
<dependency>
<groupId>io.openinference</groupId>
<artifactId>openinference-semantic-conventions</artifactId>
<version>0.1.0-SNAPSHOT</version>
</dependency>
<dependency>
<groupId>io.openinference</groupId>
<artifactId>openinference-instrumentation</artifactId>
<version>0.1.0-SNAPSHOT</version>
</dependency>
<dependency>
<groupId>io.openinference</groupId>
<artifactId>openinference-instrumentation-langchain4j</artifactId>
<version>0.1.0-SNAPSHOT</version>
</dependency>
</dependencies>
import io.opentelemetry.api.GlobalOpenTelemetry;
import io.opentelemetry.api.trace.Span;
import io.opentelemetry.api.trace.Tracer;
import io.openinference.instrumentation.OITracer;
import io.openinference.semconv.trace.SpanAttributes;
// Create an OITracer
Tracer otelTracer = GlobalOpenTelemetry.getTracer("my-app");
OITracer tracer = new OITracer(otelTracer);
// Create an LLM span
Span span = tracer.llmSpanBuilder("chat", "gpt-4")
.setAttribute(SpanAttributes.LLM_MODEL_NAME, "gpt-4")
.setAttribute(SpanAttributes.LLM_PROVIDER, "openai")
.startSpan();
try {
// Your LLM call here
// ...
// Set response attributes
span.setAttribute(SpanAttributes.LLM_TOKEN_COUNT_PROMPT, 10L);
span.setAttribute(SpanAttributes.LLM_TOKEN_COUNT_COMPLETION, 20L);
} finally {
span.end();
}
import io.openinference.instrumentation.langchain4j.LangChain4jInstrumentor;
import dev.langchain4j.model.openai.OpenAiChatModel;
// Initialize OpenTelemetry (see OpenTelemetry Java docs for full setup)
initializeOpenTelemetry();
// Auto-instrument LangChain4j
LangChain4jInstrumentor.instrument();
// Use LangChain4j as normal - traces will be automatically created
OpenAiChatModel model = OpenAiChatModel.builder()
.apiKey("your-api-key")
.modelName("gpt-4")
.build();
String response = model.generate("What is the capital of France?");
Set your Phoenix credentials as environment variables:
export PHOENIX_API_KEY="your-arize-api-key"
If you are using Phoenix Cloud, adjust the endpoint in the code below as needed.
private static void initializeOpenTelemetry() {
// Create resource with service name
Resource resource = Resource.getDefault()
.merge(Resource.create(Attributes.of(
AttributeKey.stringKey("service.name"), "langchain4j",
AttributeKey.stringKey(SEMRESATTRS_PROJECT_NAME), "langchain4j-project",
AttributeKey.stringKey("service.version"), "0.1.0")));
String apiKey = System.getenv("PHOENIX_API_KEY");
OtlpGrpcSpanExporterBuilder otlpExporterBuilder = OtlpGrpcSpanExporter.builder()
.setEndpoint("http://localhost:4317") # adjust as needed
.setTimeout(Duration.ofSeconds(2));
OtlpGrpcSpanExporter otlpExporter = null;
if (apiKey != null && !apiKey.isEmpty()) {
otlpExporter = otlpExporterBuilder
.setHeaders(() -> Map.of("Authorization", String.format("Bearer %s", apiKey)))
.build();
} else {
logger.log(Level.WARNING, "Please set PHOENIX_API_KEY environment variable if auth is enabled.");
otlpExporter = otlpExporterBuilder.build();
}
// Create tracer provider with both OTLP (for Phoenix) and console exporters
tracerProvider = SdkTracerProvider.builder()
.addSpanProcessor(BatchSpanProcessor.builder(otlpExporter)
.setScheduleDelay(Duration.ofSeconds(1))
.build())
.addSpanProcessor(SimpleSpanProcessor.create(LoggingSpanExporter.create()))
.setResource(resource)
.build();
// Build OpenTelemetry SDK
OpenTelemetrySdk.builder()
.setTracerProvider(tracerProvider)
.setPropagators(ContextPropagators.create(W3CTraceContextPropagator.getInstance()))
.buildAndRegisterGlobal();
System.out.println("OpenTelemetry initialized. Traces will be sent to Phoenix at http://localhost:6006");
}
}
Once configured, your OpenInference traces will be automatically sent to Phoenix where you can:
Monitor Performance: Track latency, throughput, and error rates
Analyze Usage: View token usage, model performance, and cost metrics
Debug Issues: Trace request flows and identify bottlenecks
Evaluate Quality: Run evaluations on your LLM outputs
Slack: Join our community
GitHub Issues: OpenInference Repository