Skip to main content
NPM Version This package provides OpenInference Core utilities for LLM Traces, including tracing helpers, decorators, and context attribute propagation.

Installation

npm install @arizeai/openinference-core

Tracing Helpers

This package provides convenient helpers to instrument your functions, agents, and LLM operations with OpenInference spans.

withSpan

Wraps any function (sync or async) with OpenTelemetry tracing:
import { withSpan } from "@arizeai/openinference-core";
import { OpenInferenceSpanKind } from "@arizeai/openinference-semantic-conventions";

const processUserQuery = async (query: string) => {
  const response = await fetch(`/api/process?q=${query}`);
  return response.json();
};

const tracedProcess = withSpan(processUserQuery, {
  name: "user-query-processor",
  kind: OpenInferenceSpanKind.CHAIN,
});

traceChain

Convenience wrapper for tracing workflow sequences:
import { traceChain } from "@arizeai/openinference-core";

const ragPipeline = async (question: string) => {
  const documents = await retrieveDocuments(question);
  const context = documents.map((d) => d.content).join("\n");
  const answer = await generateAnswer(question, context);
  return answer;
};

const tracedRag = traceChain(ragPipeline, { name: "rag-pipeline" });

traceAgent

Convenience wrapper for tracing autonomous agents:
import { traceAgent } from "@arizeai/openinference-core";

const simpleAgent = async (question: string) => {
  const documents = await retrieveDocuments(question);
  const analysis = await analyzeContext(question, documents);
  return await executePlan(analysis);
};

const tracedAgent = traceAgent(simpleAgent, { name: "qa-agent" });

traceTool

Convenience wrapper for tracing external tools:
import { traceTool } from "@arizeai/openinference-core";

const weatherTool = async (city: string) => {
  const response = await fetch(`https://api.weather.com/v1/${city}`);
  return response.json();
};

const tracedWeatherTool = traceTool(weatherTool, { name: "weather-api" });

Decorators

@observe

Decorator for automatically tracing class methods:
import { observe } from "@arizeai/openinference-core";

class ChatService {
  @observe({ kind: "chain" })
  async processMessage(message: string) {
    return `Processed: ${message}`;
  }

  @observe({ name: "llm-call", kind: "llm" })
  async callLLM(prompt: string) {
    return await llmClient.generate(prompt);
  }
}

Customizing Spans

The package offers utilities to track important application metadata using context attribute propagation:
FunctionDescription
setSessionSpecify a session ID to track and group multi-turn conversations
setUserSpecify a user ID to track different conversations with a given user
setMetadataAdd custom metadata for operational needs
setTagAdd tags to filter spans on specific keywords
setPromptTemplateTrack prompt template used, with version and variables
setAttributesAdd multiple custom attributes at once
All @arizeai/openinference auto instrumentation packages will pull attributes off of context and add them to spans.

Example: setSession

import { context } from "@opentelemetry/api";
import { setSession } from "@arizeai/openinference-core";

context.with(setSession(context.active(), { sessionId: "session-id" }), () => {
  // Calls within this block will generate spans with the attributes:
  // "session.id" = "session-id"
});

Chaining Setters

Each setter function returns a new active context, so they can be chained together:
import { context } from "@opentelemetry/api";
import { setAttributes, setSession } from "@arizeai/openinference-core";

context.with(
  setAttributes(setSession(context.active(), { sessionId: "session-id" }), {
    myAttribute: "test",
  }),
  () => {
    // Calls within this block will generate spans with the attributes:
    // "myAttribute" = "test"
    // "session.id" = "session-id"
  },
);

Manual Span Context Propagation

If you are creating spans manually and want to propagate context attributes, use the getAttributesFromContext utility:
import { getAttributesFromContext } from "@arizeai/openinference-core";
import { context, trace } from "@opentelemetry/api";

const contextAttributes = getAttributesFromContext(context.active());
const tracer = trace.getTracer("example");
const span = tracer.startSpan("example span");
span.setAttributes(contextAttributes);
span.end();

Attribute Helpers

Generate properly formatted attributes for common LLM operations.

getLLMAttributes

Generate attributes for LLM operations:
import { getLLMAttributes } from "@arizeai/openinference-core";
import { trace } from "@opentelemetry/api";

const tracer = trace.getTracer("llm-service");

tracer.startActiveSpan("llm-inference", (span) => {
  const attributes = getLLMAttributes({
    provider: "openai",
    modelName: "gpt-4",
    inputMessages: [{ role: "user", content: "What is AI?" }],
    outputMessages: [{ role: "assistant", content: "AI is..." }],
    tokenCount: { prompt: 10, completion: 50, total: 60 },
  });
  span.setAttributes(attributes);
  span.end();
});

getEmbeddingAttributes

Generate attributes for embedding operations:
import { getEmbeddingAttributes } from "@arizeai/openinference-core";
import { trace } from "@opentelemetry/api";

const tracer = trace.getTracer("embedding-service");

tracer.startActiveSpan("generate-embeddings", (span) => {
  const attributes = getEmbeddingAttributes({
    modelName: "text-embedding-ada-002",
    embeddings: [
      { text: "The quick brown fox", vector: [0.1, 0.2, 0.3] },
      { text: "jumps over the lazy dog", vector: [0.4, 0.5, 0.6] },
    ],
  });
  span.setAttributes(attributes);
  span.end();
});

getRetrieverAttributes

Generate attributes for document retrieval:
import { getRetrieverAttributes } from "@arizeai/openinference-core";
import { trace } from "@opentelemetry/api";

const tracer = trace.getTracer("retriever-service");

async function retrieveDocuments(query: string) {
  return tracer.startActiveSpan("retrieve-documents", async (span) => {
    const documents = await vectorStore.similaritySearch(query, 5);
    const attributes = getRetrieverAttributes({
      documents: documents.map((doc) => ({
        content: doc.pageContent,
        id: doc.metadata.id,
        score: doc.score,
        metadata: doc.metadata,
      })),
    });
    span.setAttributes(attributes);
    span.end();
    return documents;
  });
}

getToolAttributes

Generate attributes for tool definitions:
import { getToolAttributes } from "@arizeai/openinference-core";
import { trace } from "@opentelemetry/api";

const tracer = trace.getTracer("tool-service");

tracer.startActiveSpan("define-tool", (span) => {
  const attributes = getToolAttributes({
    name: "search_web",
    description: "Search the web for information",
    parameters: {
      query: { type: "string", description: "The search query" },
      maxResults: { type: "number", description: "Maximum results to return" },
    },
  });
  span.setAttributes(attributes);
  span.end();
});

Trace Config

Control settings like data privacy and payload sizes. You may want to keep sensitive information from being logged for security reasons, or limit the size of base64 encoded images.
These values can also be controlled via environment variables. See the configuration spec for more information.
import { OpenAIInstrumentation } from "@arizeai/openinference-instrumentation-openai";

const traceConfig = { hideInputs: true };

const instrumentation = new OpenAIInstrumentation({ traceConfig });

Reference Documentation