On-Demand
Virtual
In today’s hyper-connected world, the pace of AI development and innovation is staggering, reshaping industries and redefining what’s possible at unprecedented speed. According to a recent survey, over half (53%) of data science and machine learning teams say they plan to deploy large language model (LLM) applications into production in the next 12 months or “as soon as possible” – however, nearly as many (43%) cite issues like accuracy of responses and hallucinations as a main barrier to implementation.
In this Lunch & Learn, we will discuss how to best alleviate the challenges machine learning and data science teams face when implementing LLMs in production.
Objectives:
- Understand the landscape of AI innovation, including LLMs, and its transformative potential
- Discover the foundational technologies required to build robust and resilient LLM infrastructure
- Deep-dive into the world of word embeddings, learning how these vector representations are fundamental to the operation of language models.
- Understand where issues generally emerge with LLMs in production, their causes, and implications for your LLMOps practice.
- Introduction into strategies for monitoring, troubleshooting, and fine-tuning LLM models.