What Are Local Interpretable Model-Agnostic Explanations -- or What is LIME -- In Machine Learning?

LIME

LIME, or “Local Interpretable Model-Agnostic Explanations,” is an explainability method that attempts to provide local ML explainability. At a high level, LIME attempts to understand how perturbations in a model’s inputs affect the end-prediction of the model. Since it makes no assumptions about how the model reaches the prediction, it can be used with any model architecture, hence the “model-agnostic” part of LIME. The LIME explainability approach takes a single input value of predictions and perturbs the inputs around those values. It then builds a linear model off of the feature perturbations where the coefficients are the feature importances at this local prediction.

LIME graphic

Sign up for our monthly newsletter, The Evaluator.

Sign up now