Instructor Tracing

Launch Phoenix

Sign up for Phoenix:

  1. Sign up for an Arize Phoenix account at https://app.phoenix.arize.com/login

  2. Click Create Space, then follow the prompts to create and launch your space.

Install packages:

pip install arize-phoenix-otel

Set your Phoenix endpoint and API Key:

From your new Phoenix Space

  1. Create your API key from the Settings page

  2. Copy your Hostname from the Settings page

  3. In your code, set your endpoint and API key:

import os

os.environ["PHOENIX_API_KEY"] = "ADD YOUR PHOENIX API KEY"
os.environ["PHOENIX_COLLECTOR_ENDPOINT"] = "ADD YOUR PHOENIX HOSTNAME"

# If you created your Phoenix Cloud instance before June 24th, 2025,
# you also need to set the API key as a header:
# os.environ["PHOENIX_CLIENT_HEADERS"] = f"api_key={os.getenv('PHOENIX_API_KEY')}"

Having trouble finding your endpoint? Check out Finding your Phoenix Endpoint

Install

pip install openinference-instrumentation-instructor instructor

Be sure you also install the OpenInference library for the underlying model you're using along with Instructor. For example, if you're using OpenAI calls directly, you would also add: openinference-instrumentation-openai

Setup

Connect to your Phoenix instance using the register function.

from phoenix.otel import register

# configure the Phoenix tracer
tracer_provider = register(
  project_name="my-llm-app", # Default is 'default'
  auto_instrument=True # Auto-instrument your app based on installed OI dependencies
)

Run Instructor

From here you can use instructor as normal.

import instructor
from pydantic import BaseModel
from openai import OpenAI


# Define your desired output structure
class UserInfo(BaseModel):
    name: str
    age: int


# Patch the OpenAI client
client = instructor.from_openai(OpenAI())

# Extract structured data from natural language
user_info = client.chat.completions.create(
    model="gpt-3.5-turbo",
    response_model=UserInfo,
    messages=[{"role": "user", "content": "John Doe is 30 years old."}],
)

print(user_info.name)
#> John Doe
print(user_info.age)
#> 30

Observe

Now that you have tracing setup, all invocations of your underlying model (completions, chat completions, embeddings) and instructor triggers will be streamed to your running Phoenix for observability and evaluation.

Last updated

Was this helpful?