Arconia Tracing

How to use OpenInference instrumentation with Arconia and export traces to Arize Phoenix.

Prerequisites

  • Java 11 or higher

  • (Optional) Phoenix API key if using auth

Add Dependencies

1. Gradle

Add the dependencies to your build.gradle:

dependencies {
    implementation 'io.arconia:arconia-openinference-semantic-conventions'
    implementation 'io.arconia:arconia-opentelemetry-spring-boot-starter'

    implementation 'org.springframework.boot:spring-boot-starter-web'
    implementation 'org.springframework.ai:spring-ai-starter-model-mistral-ai'

    developmentOnly 'org.springframework.boot:spring-boot-devtools'
    testAndDevelopmentOnly 'io.arconia:arconia-dev-services-phoenix'

    testImplementation 'org.springframework.boot:spring-boot-starter-test'
    testRuntimeOnly 'org.junit.platform:junit-platform-launcher'
}

Setup Phoenix Tracing

Pull latest Phoenix image from Docker Hub:

docker pull arizephoenix/phoenix:latest

Run your containerized instance:

docker run -p 6006:6006 -p 4317:4317 arizephoenix/phoenix:latest

This command:

  • Exposes port 6006 for the Phoenix web UI

  • Exposes port 4317 for the OTLP gRPC endpoint (where traces are sent)

For more info on using Phoenix with Docker, see Docker.

Run Arconia

By instrumenting your application with Arconia, spans are automatically created whenever your AI models (e.g., via Spring AI) are invoked and sent to the Phoenix server for collection. Arconia plugs into Spring Boot and Spring AI with minimal code changes.

package io.arconia.demo;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.ai.chat.client.ChatClient;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RestController;

@SpringBootApplication
public class ArconiaTracingApplication {
    public static void main(String[] args) {
        SpringApplication.run(ArconiaTracingApplication.class, args);
    }
}

@RestController
class ChatController {

    private static final Logger logger = LoggerFactory.getLogger(ChatController.class);
    private final ChatClient chatClient;

    ChatController(ChatClient.Builder chatClientBuilder) {
        this.chatClient = chatClientBuilder.clone().build();
    }

    @GetMapping("/chat")
    String chat(String question) {
        logger.info("Received question: {}", question);
        return chatClient
                .prompt(question)
                .call()
                .content();
    }
}

Observe

Once configured, your OpenInference traces will be automatically sent to Phoenix where you can:

  • Monitor Performance: Track latency, throughput, and error rates

  • Analyze Usage: View token usage, model performance, and cost metrics

  • Debug Issues: Trace request flows and identify bottlenecks

  • Evaluate Quality: Run evaluations on your LLM outputs

Resources

Last updated

Was this helpful?