OpenAI Tracing
Phoenix provides auto-instrumentation for the OpenAI Python Library.
Launch Phoenix
We have several code samples below on different ways to integrate with OpenAI, based on how you want to use Phoenix.
Sign up for Phoenix:
Sign up for an Arize Phoenix account at https://app.phoenix.arize.com/login
Click
Create Space
, then follow the prompts to create and launch your space.
Install packages:
pip install arize-phoenix-otel
Set your Phoenix endpoint and API Key:
From your new Phoenix Space
Create your API key from the Settings page
Copy your
Hostname
from the Settings pageIn your code, set your endpoint and API key:
import os
os.environ["PHOENIX_API_KEY"] = "ADD YOUR PHOENIX API KEY"
os.environ["PHOENIX_COLLECTOR_ENDPOINT"] = "ADD YOUR PHOENIX HOSTNAME"
# If you created your Phoenix Cloud instance before June 24th, 2025,
# you also need to set the API key as a header:
# os.environ["PHOENIX_CLIENT_HEADERS"] = f"api_key={os.getenv('PHOENIX_API_KEY')}"
Install
pip install openinference-instrumentation-openai openai
Setup
Add your OpenAI API key as an environment variable:
export OPENAI_API_KEY=[your_key_here]
Use the register function to connect your application to Phoenix:
from phoenix.otel import register
# configure the Phoenix tracer
tracer_provider = register(
project_name="my-llm-app", # Default is 'default'
auto_instrument=True # Auto-instrument your app based on installed dependencies
)
Run OpenAI
import openai
client = openai.OpenAI()
response = client.chat.completions.create(
model="gpt-4o",
messages=[{"role": "user", "content": "Write a haiku."}],
)
print(response.choices[0].message.content)
Observe
Now that you have tracing setup, all invocations of OpenAI (completions, chat completions, embeddings) will be streamed to your running Phoenix for observability and evaluation.
Resources
Last updated
Was this helpful?