LangChain4j Tracing

How to use OpenInference instrumentation with LangChain4j and export traces to Arize Phoenix.

Prerequisites

  • Java 11 or higher

  • (Optional) Phoenix API key if using auth

Add Dependencies

Add the dependencies to your build.gradle:

dependencies {
    // OpenInference instrumentation
    implementation project(path: ':instrumentation:openinference-instrumentation-langchain4j')
    
    // LangChain4j
    implementation "dev.langchain4j:langchain4j:${langchain4jVersion}"
    implementation "dev.langchain4j:langchain4j-open-ai:${langchain4jVersion}"
    
    // OpenTelemetry
    implementation "io.opentelemetry:opentelemetry-sdk"
    implementation "io.opentelemetry:opentelemetry-exporter-otlp"
    implementation "io.opentelemetry:opentelemetry-exporter-logging"
}

Setup Phoenix

Pull latest Phoenix image from Docker Hub:

docker pull arizephoenix/phoenix:latest

Run your containerized instance:

docker run -p 6006:6006 -p 4317:4317 arizephoenix/phoenix:latest

This command:

  • Exposes port 6006 for the Phoenix web UI

  • Exposes port 4317 for the OTLP gRPC endpoint (where traces are sent)

For more info on using Phoenix with Docker, see Docker.

Configuration for Phoenix Tracing

private static void initializeOpenTelemetry() {
        // Create resource with service name
        Resource resource = Resource.getDefault()
                .merge(Resource.create(Attributes.of(
                        AttributeKey.stringKey("service.name"), "langchain4j",
                        AttributeKey.stringKey(SEMRESATTRS_PROJECT_NAME), "langchain4j-project",
                        AttributeKey.stringKey("service.version"), "0.1.0")));

        String apiKey = System.getenv("PHOENIX_API_KEY");
        OtlpGrpcSpanExporterBuilder otlpExporterBuilder = OtlpGrpcSpanExporter.builder()
                .setEndpoint("http://localhost:4317") # adjust as needed
                .setTimeout(Duration.ofSeconds(2));
        OtlpGrpcSpanExporter otlpExporter = null;
        if (apiKey != null && !apiKey.isEmpty()) {
            otlpExporter = otlpExporterBuilder
                    .setHeaders(() -> Map.of("Authorization", String.format("Bearer %s", apiKey)))
                    .build();
        } else {
            logger.log(Level.WARNING, "Please set PHOENIX_API_KEY environment variable if auth is enabled.");
            otlpExporter = otlpExporterBuilder.build();
        }

        // Create tracer provider with both OTLP (for Phoenix) and console exporters
        tracerProvider = SdkTracerProvider.builder()
                .addSpanProcessor(BatchSpanProcessor.builder(otlpExporter)
                        .setScheduleDelay(Duration.ofSeconds(1))
                        .build())
                .addSpanProcessor(SimpleSpanProcessor.create(LoggingSpanExporter.create()))
                .setResource(resource)
                .build();

        // Build OpenTelemetry SDK
        OpenTelemetrySdk.builder()
                .setTracerProvider(tracerProvider)
                .setPropagators(ContextPropagators.create(W3CTraceContextPropagator.getInstance()))
                .buildAndRegisterGlobal();

        System.out.println("OpenTelemetry initialized. Traces will be sent to Phoenix at http://localhost:6006");
    }
}

Run LangChain4j

By instrumenting your application, spans will be created whenever it is run and will be sent to the Phoenix server for collection.

import io.openinference.instrumentation.langchain4j.LangChain4jInstrumentor;
import dev.langchain4j.model.openai.OpenAiChatModel;

initializeOpenTelemetry();

// Auto-instrument LangChain4j
LangChain4jInstrumentor.instrument();

// Use LangChain4j as normal - traces will be automatically created
OpenAiChatModel model = OpenAiChatModel.builder()
    .apiKey("your-openai-api-key")
    .modelName("gpt-4")
    .build();

String response = model.generate("What is the capital of France?");

Observe

Once configured, your traces will be automatically sent to Phoenix where you can:

  • Monitor Performance: Track latency, throughput, and error rates

  • Analyze Usage: View token usage, model performance, and cost metrics

  • Debug Issues: Trace request flows and identify bottlenecks

  • Evaluate Quality: Run evaluations on your LLM outputs

Resources

Last updated

Was this helpful?