LangChain Tracing

How to use the python LangChainInstrumentor to trace LangChain

Phoenix has first-class support for LangChain applications.

Launch Phoenix

Sign up for Phoenix:

  1. Sign up for an Arize Phoenix account at https://app.phoenix.arize.com/login

  2. Click Create Space, then follow the prompts to create and launch your space.

Install packages:

pip install arize-phoenix-otel

Set your Phoenix endpoint and API Key:

From your new Phoenix Space

  1. Create your API key from the Settings page

  2. Copy your Hostname from the Settings page

  3. In your code, set your endpoint and API key:

import os

os.environ["PHOENIX_API_KEY"] = "ADD YOUR PHOENIX API KEY"
os.environ["PHOENIX_COLLECTOR_ENDPOINT"] = "ADD YOUR PHOENIX HOSTNAME"

# If you created your Phoenix Cloud instance before June 24th, 2025,
# you also need to set the API key as a header:
# os.environ["PHOENIX_CLIENT_HEADERS"] = f"api_key={os.getenv('PHOENIX_API_KEY')}"

Having trouble finding your endpoint? Check out Finding your Phoenix Endpoint

Install

pip install openinference-instrumentation-langchain langchain_openai

Setup

Use the register function to connect your application to Phoenix:

from phoenix.otel import register

# configure the Phoenix tracer
tracer_provider = register(
  project_name="my-llm-app", # Default is 'default'
  auto_instrument=True # Auto-instrument your app based on installed OI dependencies
)

Run LangChain

By instrumenting LangChain, spans will be created whenever a chain is run and will be sent to the Phoenix server for collection.

from langchain_core.prompts import ChatPromptTemplate
from langchain_openai import ChatOpenAI

prompt = ChatPromptTemplate.from_template("{x} {y} {z}?").partial(x="why is", z="blue")
chain = prompt | ChatOpenAI(model_name="gpt-3.5-turbo")
chain.invoke(dict(y="sky"))

Observe

Now that you have tracing setup, all invocations of chains will be streamed to your running Phoenix for observability and evaluation.

Resources

Last updated

Was this helpful?