Pydantic AI Tracing
How to use the python PydanticAIInstrumentor to trace PydanticAI agents
PydanticAI is a Python agent framework designed to make it less painful to build production-grade applications with Generative AI. Built by the team behind Pydantic, it provides a clean, type-safe way to build AI agents with structured outputs.
Launch Phoenix
Sign up for Phoenix:
Sign up for an Arize Phoenix account at https://app.phoenix.arize.com/login
Click
Create Space
, then follow the prompts to create and launch your space.
Install packages:
pip install arize-phoenix-otel
Set your Phoenix endpoint and API Key:
From your new Phoenix Space
Create your API key from the Settings page
Copy your
Hostname
from the Settings pageIn your code, set your endpoint and API key:
import os
os.environ["PHOENIX_API_KEY"] = "ADD YOUR PHOENIX API KEY"
os.environ["PHOENIX_COLLECTOR_ENDPOINT"] = "ADD YOUR PHOENIX HOSTNAME"
# If you created your Phoenix Cloud instance before June 24th, 2025,
# you also need to set the API key as a header:
# os.environ["PHOENIX_CLIENT_HEADERS"] = f"api_key={os.getenv('PHOENIX_API_KEY')}"
Install
pip install openinference-instrumentation-pydantic-ai pydantic-ai opentelemetry-sdk opentelemetry-exporter-otlp opentelemetry-api
Setup
Set up tracing using OpenTelemetry and the PydanticAI instrumentation:
import os
from opentelemetry import trace
from opentelemetry.exporter.otlp.proto.http.trace_exporter import OTLPSpanExporter
from opentelemetry.sdk.trace import TracerProvider
from openinference.instrumentation.pydantic_ai import OpenInferenceSpanProcessor
from opentelemetry.sdk.trace.export import SimpleSpanProcessor
# Set up the tracer provider
tracer_provider = TracerProvider()
trace.set_tracer_provider(tracer_provider)
# Add the OpenInference span processor
endpoint = f"{os.environ['PHOENIX_COLLECTOR_ENDPOINT']}/v1/traces"
# If you are using a local instance without auth, ignore these headers
headers = {"Authorization": f"Bearer {os.environ['PHOENIX_API_KEY']}"}
exporter = OTLPSpanExporter(endpoint=endpoint, headers=headers)
tracer_provider.add_span_processor(OpenInferenceSpanProcessor())
tracer_provider.add_span_processor(SimpleSpanProcessor(exporter))
Basic Usage
Here's a simple example using PydanticAI with automatic tracing:
from pydantic import BaseModel
from pydantic_ai import Agent
from pydantic_ai.models.openai import OpenAIModel
import nest_asyncio
nest_asyncio.apply()
# Set your OpenAI API key
os.environ["OPENAI_API_KEY"] = "YOUR_OPENAI_API_KEY"
# Define your Pydantic model
class LocationModel(BaseModel):
city: str
country: str
# Create and configure the agent
model = OpenAIModel("gpt-4", provider='openai')
agent = Agent(model, output_type=LocationModel, instrument=True)
# Run the agent
result = agent.run_sync("The windy city in the US of A.")
print(result)
Advanced Usage
Agent with System Prompts and Tools
from pydantic import BaseModel, Field
from pydantic_ai import Agent, RunContext
from pydantic_ai.models.openai import OpenAIModel
from typing import List
import httpx
class WeatherInfo(BaseModel):
location: str
temperature: float = Field(description="Temperature in Celsius")
condition: str
humidity: int = Field(description="Humidity percentage")
# Create an agent with system prompts and tools
weather_agent = Agent(
model=OpenAIModel("gpt-4"),
output_type=WeatherInfo,
system_prompt="You are a helpful weather assistant. Always provide accurate weather information.",
instrument=True
)
@weather_agent.tool
async def get_weather_data(ctx: RunContext[None], location: str) -> str:
"""Get current weather data for a location."""
# Mock weather API call - replace with actual weather service
async with httpx.AsyncClient() as client:
# This is a placeholder - use a real weather API
mock_data = {
"temperature": 22.5,
"condition": "partly cloudy",
"humidity": 65
}
return f"Weather in {location}: {mock_data}"
# Run the agent with tool usage
result = weather_agent.run_sync("What's the weather like in Paris?")
print(result)
Observe
Now that you have tracing setup, all PydanticAI agent operations will be streamed to your running Phoenix instance for observability and evaluation. You'll be able to see:
Agent interactions: Complete conversations between your application and the AI model
Structured outputs: Pydantic model validation and parsing results
Tool usage: When agents call external tools and their responses
Performance metrics: Response times, token usage, and success rates
Error handling: Validation errors, API failures, and retry attempts
Multi-agent workflows: Complex interactions between multiple agents
The traces will provide detailed insights into your AI agent behaviors, making it easier to debug issues, optimize performance, and ensure reliability in production.
Resources
Last updated
Was this helpful?