Arize provides tracing for MCP clients and servers through OpenInference. This includes the unique capability to trace client to server interactions under a single trace in the correct hierarchy.
The openinference-instrumentation-mcp instrumentor is unique compared to other OpenInference instrumentors. It does not generate any of its own telemetry. Instead, it enables context propagation between MCP clients and servers to unify traces. You still need generate OpenTelemetry traces in both the client and server to see a unified trace.
import asynciofrom agents import Agent, Runnerfrom agents.mcp import MCPServer, MCPServerStdiofrom dotenv import load_dotenvfrom arize.otel import registerfrom openinference.instrumentation.mcp import MCPInstrumentorfrom openinference.instrumentation.openai_agents import OpenAIAgentsInstrumentorload_dotenv()# Connect to your Arize instancetracer_provider =register( space_id ="your-space-id", # in app space settings page api_key ="your-api-key", # in app space settings page)MCPInstrumentor().instrument(tracer_provider=tracer_provider)OpenAIAgentsInstrumentor().instrument(tracer_provider=tracer_provider)asyncdefrun(mcp_server: MCPServer): agent =Agent( name="Assistant", instructions="Use the tools to answer the users question.", mcp_servers=[mcp_server], )whileTrue: message =input("\n\nEnter your question (or 'exit' to quit): ")if message.lower()=="exit"or message.lower()=="q":breakprint(f"\n\nRunning: {message}") result =await Runner.run(starting_agent=agent, input=message)print(result.final_output)asyncdefmain():asyncwithMCPServerStdio( name="Financial Analysis Server", params={"command": "fastmcp","args": ["run", "./server.py"], }, client_session_timeout_seconds=30, )as server:awaitrun(server)if__name__=="__main__": asyncio.run(main())
Add Tracing to your MCP Server
import json
import os
from datetime import datetime, timedelta
import openai
from dotenv import load_dotenv
from mcp.server.fastmcp import FastMCP
from pydantic import BaseModel
from arize.otel import register
from openinference.instrumentation.mcp import MCPInstrumentor
from openinference.instrumentation.openai_agents import OpenAIAgentsInstrumentor
load_dotenv()
# You must also connect your MCP server to Arize
tracer_provider = register(
space_id = "your-space-id", # in app space settings page
api_key = "your-api-key", # in app space settings page
)
MCPInstrumentor().instrument(tracer_provider=tracer_provider)
OpenAIAgentsInstrumentor().instrument(tracer_provider=tracer_provider)
# Get a tracer to add additional instrumentattion
tracer = tracer_provider.get_tracer("financial-analysis-server")
# Configure OpenAI client
client = openai.OpenAI(api_key=os.environ.get("OPENAI_API_KEY"))
MODEL = "gpt-4-turbo"
# Create MCP server
mcp = FastMCP("Financial Analysis Server")
class StockAnalysisRequest(BaseModel):
ticker: str
time_period: str = "short-term" # short-term, medium-term, long-term
@mcp.tool()
@tracer.tool(name="MCP.analyze_stock") # this OpenInference call adds tracing to this method
def analyze_stock(request: StockAnalysisRequest) -> dict:
"""Analyzes a stock based on its ticker symbol and provides investment recommendations."""
# Make LLM API call to analyze the stock
prompt = f"""
Provide a detailed financial analysis for the stock ticker: {request.ticker}
Time horizon: {request.time_period}
Please include:
1. Company overview
2. Recent financial performance
3. Key metrics (P/E ratio, market cap, etc.)
4. Risk assessment
5. Investment recommendation
Format your response as a JSON object with the following structure:
{{
"ticker": "{request.ticker}",
"company_name": "Full company name",
"overview": "Brief company description",
"financial_performance": "Analysis of recent performance",
"key_metrics": {{
"market_cap": "Value in billions",
"pe_ratio": "Current P/E ratio",
"dividend_yield": "Current yield percentage",
"52_week_high": "Value",
"52_week_low": "Value"
}},
"risk_assessment": "Analysis of risks",
"recommendation": "Buy/Hold/Sell recommendation with explanation",
"time_horizon": "{request.time_period}"
}}
"""
response = client.chat.completions.create(
model=MODEL,
messages=[{"role": "user", "content": prompt}],
response_format={"type": "json_object"},
)
analysis = json.loads(response.choices[0].message.content)
return analysis
# ... define any additional MCP tools you wish
if __name__ == "__main__":
mcp.run()