Client
Arize class to begin logging predictions and actuals from a Pandas.DataFrame.
Import and initialize Arize Client from arize.pandas.logger
from arize.pandas.logger import Client
class Client(
api_key: str #from Arize platform
space_id: str
uri: Optional[str] = "https://api.arize.com/v1"
)
Argument
Data Type
Description
api_key
str
(Required) Arize-provided api key associated with your service/space. Click "Show API Key" in the "Upload Data" page in the Arize UI to copy the key.
space_id
str
(Required) Arize-provided identifier for relating records to spaces. Click "Show API Key" in the "Upload Data" page in the Arize UI to copy the key.
uri
str
(Optional) URI endpoint required for on-prem customers. Defaults to "https://api.arize.com/v1"
Code Example
from arize.pandas.logger import Client, Schema
from arize.utils.types import ModelTypes, Environments, Schema, Metrics
import pandas as pd
SPACE_ID = "SPACE_ID" # update value here with your Space ID
API_KEY = "API_KEY" # update value here with your API key
arize_client = Client(space_id=SPACE_ID, api_key=API_KEY)
if SPACE_ID == "SPACE_ID" or API_KEY == "API_KEY":
raise ValueError("❌ NEED TO CHANGE SPACE_ID AND/OR API_KEY")
else:
print(
"✅ Import and Setup Arize Client Done! Now we can start using Arize!"
)
Last updated
Was this helpful?