Multi-Class
MultiClassPredictionLabel
Arize class to define the prediction and threshold arguments associated with the multi-class model type.
class MultiClassPredictionLabel(
prediction_scores: Dict[str, Union[float, int]] #required
threshold_scores: Dict[str, Union[float, int]] = None # optional but required for multi-label use cases
)
Argument
Data Type
Definitions
prediction_scores
Dict[str, Union[Float, int]]
(Required) The prediction scores of the classes
threshold_scores
Dict[str, Union[Float, int]]
(Optional) The threshold scores of the classes. Required for Multi-Label use cases.
MultiClassActualLabel
Arize class to define the actual arguments associated with the multi-class model type.
class MultiClassActualLabel(
actual_scores: Dict[str, Union[float, int]]
)
Argument
Data Type
Definitions
actual_scores
Dict[str, Union[Float, int]]
(Required) The actual scores of the classes. Any class in actual_scores
with a score of 1 will be sent to Arize.
Code Example
pred_label = MultiClassPredictionLabel(
prediction_scores=record["prediction_scores"],
threshold_scores=record["threshold_scores"], #additional parameter for multi-label use cases
)
actual_label = MultiClassActualLabel(
actual_scores={record["actual_class"]: 1},
)
response = arize_client.log(
model_id="multiclass-classification-multi-label-single-record-ingestion-tutorial",
model_version="1.0",
model_type=ModelTypes.MULTI_CLASS,
environment=Environments.PRODUCTION,
prediction_id=record["prediction_id"],
prediction_label=pred_label,
actual_label=actual_label,
features=record["features"]
)
Last updated
Was this helpful?